Customer Support: 131 242

  • There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM E 1005 : 2003 : EDT 1

Superseded
Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, E 706(IIIA)
Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Language(s)

English

Published date

10-02-2003

1.1 This method describes general procedures for measuring the specific activities of radioactive nuclides produced in radiometric monitors (RMs) by nuclear reactions induced during surveillance exposures for reactor vessels and support structures. More detailed procedures for individual RMs are provided in separate standards identified in and in Refs , . The measurement results can be used to define corresponding neutron induced reaction rates that can in turn be used to characterize the irradiation environment of the reactor vessel and support structure. The principal measurement technique is high resolution gamma-ray spectrometry, although X-ray photon spectrometry and Beta particle counting are used to a lesser degree for specific RMs ().

1.1.1 The measurement procedures include corrections for detector background radiation, random and true coincidence summing losses, differences in geometry between calibration source standards and the RMs, self absorption of radiation by the RM, other absorption effects, and radioactive decay corrections (, ).

1.1.2 Specific activities are calculated by taking into account the time duration of the count, the elapsed time between start of count and the end of the irradiation, the half life, the mass of the target nuclide in the RM, and the branching intensities of the radiation of interest. Using the appropriate half life and known conditions of the irradiation, the specific activities may be converted into corresponding reaction rates ().

1.1.3 Procedures for calculation of reaction rates from the radioactivity measurements and the irradiation power time history are included. A reaction rate can be converted to neutron fluence rate and fluence using the appropriate integral cross section and effective irradiation time values, and, with other reaction rates can be used to define the neutron spectrum through the use of suitable computer programs ().

1.1.4 The use of benchmark neutron fields for calibration of RMs can reduce significantly or eliminate systematic errors since many parameters, and their respective uncertainties, required for calculation of absolute reaction rates are common to both the benchmark and test measurements and therefore are self canceling. The benchmark equivalent fluence rates, for the environment tested, can be calculated from a direct ratio of the measured saturated activities in the two environments and the certified benchmark fluence rate().

Committee
E 10
DocumentType
Test Method
Pages
10
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy

ASTM E 844 : 2018 Standard Guide for Sensor Set Design and Irradiation for Reactor Surveillance
ASTM E 705 : 2018 Standard Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237
ASTM E 266 : 2017 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
ASTM E 393 : 2013 Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
ASTM E 1035 : 2018 Standard Practice for Determining Neutron Exposures for Nuclear Reactor<brk/> Vessel Support Structures
ASTM E 526 : 2017 : EDT 1 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium
ASTM E 900 : 2015 : EDT 1 Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials
ASTM E 2956 : 2014 Standard Guide for Monitoring the Neutron Exposure of LWR Reactor Pressure Vessels
ASTM E 2059 : 2015 : EDT 1 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
ASTM E 944 : 2013 : EDT 1 Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance
ASTM E 706 : 2016 Standard Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards
ASTM E 1018 : 2009 : R2013 : EDT 1 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM E 853 : 2018 Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Neutron Exposure Results
ASTM E 910 : 2018 Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance
ASTM E 1297 : 2018 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
ASTM E 523 : 2016 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
ASTM E 264 : 2019 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
ASTM E 704 : 2013 Standard Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238
ASTM E 263 : 2018 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron
ASTM E 1006 : 2013 Standard Practice for Analysis and Interpretation of Physics Dosimetry Results from Test Reactor Experiments
ASTM E 261 : 2016 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques

View more information
$122.77
Including GST where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.

Need help?
Call us on 131 242, then click here to start a Screen Sharing session
so we can help right away! Learn more