Customer Support: 131 242

  • There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM E 1854 : 2019

Current
Current

The latest, up-to-date edition.

Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

01-10-2019

1.1This practice sets forth requirements to ensure consistency in neutron-induced displacement damage testing of silicon and gallium arsenide electronic piece parts. This requires controls on facility, dosimetry, tester, and communications processes that affect the accuracy and reproducibility of these tests. It provides background information on the technical basis for the requirements and additional recommendations on neutron testing.

1.2Methods are presented for ensuring and validating consistency in neutron displacement damage testing of electronic parts such as integrated circuits, transistors, and diodes. The issues identified and the controls set forth in this practice address the characterization and suitability of the radiation environments. They generally apply to reactor sources, accelerator-based neutron sources, such as 14-MeV DT sources, and 252Cf sources. Facility and environment characteristics that introduce complications or problems are identified, and recommendations are offered to recognize, minimize or eliminate these problems. This practice may be used by facility users, test personnel, facility operators, and independent process validators to determine the suitability of a specific environment within a facility and of the testing process as a whole. Electrical measurements are addressed in other standards, such as Guide F980. Additional information on conducting irradiations can be found in Practices E798 and F1190. This practice also may be of use to test sponsors (organizations that establish test specifications or otherwise have a vested interest in the performance of electronics in neutron environments).

1.3Methods for the evaluation and control of undesired contributions to damage are discussed in this practice. References to relevant ASTM standards and technical reports are provided. Processes and methods used to arrive at the appropriate test environments and specification levels for electronics systems are beyond the scope of this practice; however, the process for determining the 1-MeV equivalent displacement specifications from operational environment neutron spectra should employ the methods and parameters described herein. Some important considerations and recommendations are addressed in Appendix X1 (Nonmandatory information).

1.4The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Committee
E 10
DocumentType
Standard Practice
Pages
13
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

ASTM F 1190 : 2018 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
ASTM E 1855 : 2015 Standard Test Method for Use of 2N2222A Silicon Bipolar Transistors as Neutron Spectrum Sensors and Displacement Damage Monitors
ASTM E 2450 : 2016 Standard Practice for Application of CaF<inf>2</inf>(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
ASTM F 980 : 2016 Standard Guide for Measurement of Rapid Annealing of Neutron-Induced Displacement Damage in Silicon Semiconductor Devices

ASTM E 523 : 2001 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
ASTM F 1190 : 1999 Standard Guide for Neutron Irradiation of Unbiased Electronic Components
ASTM E 181 : 2017 Standard Test Methods for Detector Calibration and Analysis of Radionuclides
ASTM E 1018 : 2020 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM F 980 : 1992 Guide for The Measurement of Rapid Annealing of Neutron-Induced Displacement Damage in Silicon Semiconductor Devices
ASTM E 2005 : 2010 : R2015 Standard Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields
ASTM E 482 : 2016 Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance
ASTM E 1249 : 2015 : R2021 Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources
ASTM E 264 : 2019 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
ASTM E 1018 : 2009 : R2013 : EDT 1 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM E 523 : 2016 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
ASTM E 526 : 1997 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium
ASTM E 720 : 2002 Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
ASTM E 496 : 2014 : EDT 1 Standard Test Method for Measuring Neutron Fluence and Average Energy from <sup>3</sup >H(d,n)<sup> 4</sup>He Neutron Generators by Radioactivation Techniques
ASTM E 170 : 2020 Standard Terminology Relating to Radiation Measurements and Dosimetry
ASTM E 181 : 2023 Standard Guide for Detector Calibration and Analysis of Radionuclides in Radiation Metrology for Reactor Dosimetry
ASTM E 944 : 1996 Standard Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, (IIA)
ASTM E 393 : 1996 Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
ASTM E 264 : 1992 : R1996 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
ASTM E 721 : 2016 Standard Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics
ASTM E 481 : 2016 Standard Test Method for Measuring Neutron Fluence Rates by Radioactivation of Cobalt and Silver
ASTM E 523 : 2021 : EDT 1 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
ASTM E 1297 : 1996 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
ASTM E 1249 : 2015 Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources
ASTM E 523 : 2021 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
ASTM E 1855 : 2020 Standard Test Method for Use of 2N2222A Silicon Bipolar Transistors as Neutron Spectrum Sensors and Displacement Damage Monitors
ASTM E 721 : 2022 Standard Guide for Determining Neutron Energy Spectra from Neutron Sensors for Radiation-Hardness Testing of Electronics
ASTM E 666 : 2021 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation
ASTM E 261 : 2016 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
ASTM E 170 : 2023 Standard Terminology Relating to Radiation Measurements and Dosimetry
ASTM E 526 : 2022 Standard Test Method for Measuring Fast-Neutron Reaction Rates By Radioactivation of Titanium
ASTM E 526 : 2017 : EDT 1 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium
ASTM E 2005 : 2021 Standard Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields
ASTM E 2450 : 2023 Standard Practice for Application of CaF<inf>2</inf>(Mn) Thermoluminescence Dosimeters in Mixed Neutron-Photon Environments
ASTM E 496 : 1996 Standard Test Method for Measuring Neutron Fluence Rate and Average Energy From Neutron Generators by Radioactivation Techniques
ASTM E 264 : 1992 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
ASTM E 720 : 2016 Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
ASTM F 980 : 2016 : R2024 Standard Guide for Measurement of Rapid Annealing of Neutron-Induced Displacement Damage in Silicon Semiconductor Devices
ASTM E 704 : 1996 Standard Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238
ASTM E 481 : 2023 Standard Practice for Measuring Neutron Fluence Rates by Radioactivation of Cobalt and Silver
ASTM E 1018 : 2020 : EDT 1 Standard Guide for Application of ASTM Evaluated Cross Section Data File
ASTM E 720 : 1994 Standard Guide for Selection and Use of Neutron-Activation Foils for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
ASTM E 705 : 1996 Standard Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237
ASTM E 720 : 2023 Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
ASTM E 798 : 2016 Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources
ASTM E 261 : 2016 : R2021 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
ASTM E 496 : 2014 : R2022 Standard Test Method for Measuring Neutron Fluence and Average Energy from <sup >3</sup>H(d,n)<sup>4</sup>He Neutron Generators by Radioactivation Techniques
ASTM E 482 : 2022 Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance
ASTM E 666 : 2014 Standard Practice for Calculating Absorbed Dose From Gamma or X Radiation

View more information
$112.95
Including GST where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.

Need help?
Call us on 131 242, then click here to start a Screen Sharing session
so we can help right away! Learn more