Customer Support: 131 242

  • There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM E 2412 : 2004

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Practice for Condition Monitoring of Used Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry

Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Language(s)

English

Published date

01-11-2004

1.1 This practice covers the use of FT-IR in monitoring additive depletion, contaminant buildup and base stock degradation in machinery lubricants, hydraulic fluids and other fluids used in normal machinery operation. Contaminants monitored include water, soot, ethylene glycol, fuels and incorrect oil. Oxidation, nitration and sulfonation of base stocks are monitored as evidence of degradation. The objective of this monitoring activity is to diagnose the operational condition of the machine based on fault conditions observed in the oil. Measurement and data interpretation parameters are presented to allow operators of different FT-IR spectrometers to compare results by employing the same techniques.

1.2 This practice is based on trending and distribution response analysis from mid-infrared absorption measurements. While calibration to generate physical concentration units may be possible, it is unnecessary or impractical in many cases. Warning or alarm limits (the point where maintenance action on a machine being monitored is recommended or required) can be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with correlation to equipment performance. These warning or alarm limits can be a fixed maximum or minimum value for comparison to a single measurement or can also be based on a rate of change of the response measured (). This practice describes distributions but does not preclude using rate-of-change warnings and alarms.

Note 1

It is not the intent of this practice to establish or recommend normal, cautionary, warning or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.

1.3 Spectra and distribution profiles presented herein are for illustrative purposes only, and are not to be construed as representing or establishing lubricant or machinery guidelines.

1.4 This practice is designed as a fast, simple spectroscopic check for condition monitoring of used lubricants and can be used to assist in the determination of general machinery health through measurement of properties observable in the mid-infrared spectrum such as water, oil oxidation, and others as noted in . The infrared data generated by this practice is typically used in conjunction with other testing methods. For example, infrared spectroscopy cannot determine wear metal levels or any other type of elemental analysis. The practice as presented is not intended for the prediction of lubricant physical properties (for example, viscosity, total base number, total acid number, etc.). This practice is designed for monitoring used lubricants and can aid in the determination of general machinery health and is not designed for the analysis of lubricant composition, lubricant performance or additive package formulations.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Committee
D 02
DocumentType
Standard Practice
Pages
22
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy

ASTM D 7412 : 2018 Standard Test Method for Condition Monitoring of Phosphate Antiwear Additives in In-Service Petroleum and Hydrocarbon Based Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry
ASTM D 7414 : 2018 Standard Test Method for Condition Monitoring of Oxidation in In-Service Petroleum and Hydrocarbon Based Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry
ASTM D 7720 : 2011 : R2017 Standard Guide for Statistically Evaluating Measurand Alarm Limits when Using Oil Analysis to Monitor Equipment and Oil for Fitness and Contamination
ASTM D 7686 : 2011 Standard Test Method for Field-Based Condition Monitoring of Soot in In-Service Lubricants Using a Fixed-Filter Infrared (IR) Instrument
ASTM D 7844 : 2018 Standard Test Method for Condition Monitoring of Soot in In-Service Lubricants by Trend Analysis using Fourier Transform Infrared (FT-IR) Spectrometry
ASTM D 7418 : 2012 Standard Practice for Set-Up and Operation of Fourier Transform Infrared (FT-IR) Spectrometers for In-Service Oil Condition Monitoring
ASTM D 7889 : 2013 Standard Test Method for Field Determination of In-Service Fluid Properties Using IR Spectroscopy
ASTM D 7415 : 2018 Standard Test Method for Condition Monitoring of Sulfate By-Products in In-Service Petroleum and Hydrocarbon Based Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry
ASTM D 7596 : 2014 Standard Test Method for Automatic Particle Counting and Particle Shape Classification of Oils Using a Direct Imaging Integrated Tester

View more information
$176.78
Including GST where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.

Need help?
Call us on 131 242, then click here to start a Screen Sharing session
so we can help right away! Learn more