Customer Support: 131 242

  • There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM E 267 : 1990 : R1995

Superseded

Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Test Method for Uranium and Plutonium Concentrations and Isotopic Abundances

Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Language(s)

English

Published date

27-05-1990

CONTAINED IN VOL. 12.01, 2006 Applies to the determination of uranium (U) and plutonium (Pu) concentrations and their isotopic abundances (Note 1) in solutions which result from the dissolution of nuclear reactor fuels either before or after irradiation. A minimum sample size of 50 [mu]g of irradiated U will contain sufficient Pu for measurement and will minimize the effects of cross contamination by environment U.

1.1 This test method is applicable to the determination of uranium (U) and plutonium (Pu) concentrations and their isotopic abundances (Note 1) in solutions which result from the dissolution of nuclear reactor fuels either before or after irradiation. A minimum sample size of 50 [mu]g of irradiated U will contain sufficient Pu for measurement and will minimize the effects of cross contamination by environment U.

Note 1—The isotopic abundance of Pu can be determined by this test method; however, interference from U may be encountered. This interference may be due to (1) inadequate chemical separation of uranium and plutonium, (2) uranium contamination within the mass spectrometer, and (3) uranium contamination in the filament. One indication of uranium contamination is a changing 238/239 ratio during the mass spectrometer run, in which case, a meaningful Pu analysis cannot be obtained on that run. If inadequate separation is the problem, a second pass through the separation may remove the uranium. If contamination in the mass spectrometer or on the filaments is the problem, use of a larger sample, for example, 1 μg, on the filament may ease the problem. A recommended alternative method of determining Pu isotopic abundance without U interference is alpha spectroscopy using Practice D3084. The Pu abundance should be obtained by determining the ratio of alpha particle activity of Pu to the sum of the activities of Pu and Pu. (1) The contribution of Pu and Pu to the alpha activity differs from their isotopic abundances due to different specific activities.

1.2 The procedure is applicable to dissolver solutions of uranium fuels containing plutonium, aluminum, stainless steel, or zirconium. Interference from other alloying constituents has not been investigated and no provision has been made in the test method for fuels used in the Th U fuel cycle.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Committee
C 26
DocumentType
Test Method
Pages
7
ProductNote
Reconfirmed 1995
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy

ASTM E 137 : 1982 : R1987 Practice for Evaluation of Mass Spectrometers for Quantitative Analysis from a Batch Inlet (Withdrawn 1992)

View more information
$122.77
Including GST where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.

Need help?
Call us on 131 242, then click here to start a Screen Sharing session
so we can help right away! Learn more