• There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ISO 16639:2017

Current
Current

The latest, up-to-date edition.

Surveillance of the activity concentrations of airborne radioactive substances in the workplace of nuclear facilities
Available format(s)

Hardcopy , PDF , PDF 3 Users , PDF 5 Users , PDF 9 Users

Language(s)

English, French

Published date

16-01-2017

ISO 16639:2017 provides guidelines and performance criteria for sampling airborne radioactive substances in the workplace. Emphasis is on health protection of workers in the indoor environment.

ISO 16639:2017 provides best practices and performance-based criteria for the use of air sampling devices and systems, including retrospective samplers and continuous air monitors. Specifically, this document covers air sampling program objectives, design of air sampling and monitoring programs to meet program objectives, methods for air sampling and monitoring in the workplace, and quality assurance to ensure system performance toward protecting workers against unnecessary inhalation exposures.

The primary purpose of the surveillance of airborne activity concentrations in the workplace is to evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A comprehensive surveillance program can be used to

- determine the effectiveness of administrative and engineering controls for confinement,

- measure activity concentrations of radioactive substances,

- alert workers to high activity concentrations in the air,

- aid in estimating worker intakes when bioassay methods are unavailable,

- determine signage or posting requirements for radiation protection, and

- determine appropriate protective equipment and measures.

Air sampling techniques consist of two general approaches. The first approach is retrospective sampling, in which the air is sampled, the collection medium is removed and taken to a radiation detector system and analysed for radioactive substance, and the concentration results made available at a later time. In this context, the measured air concentrations are evaluated retrospectively. The second approach is continuous real-time air monitoring so that workers can be warned that a significant release of airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is important to achieve a balance between the two general approaches. The specific balance depends on hazard level of the work and the characteristics of each facility.

A special component of the second approach which can apply, if properly implemented, is the preparation of continuous air monitoring instrumentation and protocols. This enables radiation protection monitoring of personnel that have been trained and fitted with personal protective equipment (PPE) that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive substances. Such approaches can occur either as part of a planned re-entry of a contaminated area following an accidental loss of containment for accident assessment and recovery, or part of a project which involves systematic or routine access to radioactive substances (e.g. preparing process material containing easily aerosolized components), or handling objects such as poorly characterized waste materials that may contain radioactive contaminants that could be aerosolized when handled during repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health physics personnel that the air concentrations of concern have exceeded a threshold such that the planned level of protection afforded by PPE has been or could be exceeded. This level would typically be many 10's or 100's of times higher than the derived air concentration (DAC) established for unprotected workers. The monitoring alarm or alert would therefore be designed not to be confused with the normal monitoring alarm, and the action taken in response would be similarly targeted at the specific site and personnel involved.

The air sampling strategy should be designed to minimize internal exposures and balanced with social, technical, economic, practical, and public policy considerations that are associated with the use of the radioactive substance.

A comprehensive air sampling strategy should also consider that the air sampling program is only one element of a broader radiation protection program. Therefore, individuals involved with the air sampling program should interact with personnel working in other elements of the radiation protection program, such as contamination control and internal dosimetry.

ISO 16639:2017 does not address outdoor air sampling, effluent monitoring, or radon measurements.

Committee
ISO/TC 85/SC 2
DevelopmentNote
Supersedes ISO/DIS 16639. (01/2017)
DocumentType
Standard
Pages
32
PublisherName
International Organization for Standardization
Status
Current

17/30326674 DC : 0 BS ISO 16647 - NUCLEAR FACILITIES - CRITERIA FOR DESIGN AND OPERATION OF CONFINEMENT SYSTEMS FOR NUCLEAR WORKSITE AND FOR NUCLEAR INSTALLATIONS UNDER DECOMMISSIONING

ISO 26802:2010 Nuclear facilities Criteria for the design and the operation of containment and ventilation systems for nuclear reactors
ANSI N13.56 : 2012 SAMPLING AND MONITORING RELEASES OF AIRBORNE RADIOACTIVITY IN THE WORKPLACE
ISO 17873:2004 Nuclear facilities — Criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors
ISO 2889:2010 Sampling airborne radioactive materials from the stacks and ducts of nuclear facilities
ISO 11929:2010 Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation Fundamentals and application
ISO 20553:2006 Radiation protection Monitoring of workers occupationally exposed to a risk of internal contamination with radioactive material

View more information
£139.00
Excluding VAT

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.