• There are no items in your cart

ASTM E 1458 : 1992

Superseded
Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Test Method for Calibration Verification of Laser Diffraction Particle Sizing Instruments Using Photomask Reticles
Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Language(s)

English

Published date

01-01-2001

1.1 This test method describes a procedure necessary to permit a user to easily verify that a laser diffraction particle sizing instrument is operating within tolerance limit specifications, for example, such that the instrument accuracy is as stated by the manufacturer. The recommended calibration verification method provides a decisive indication of the overall performance of the instrument at the calibration point or points, but it is specifically not to be inferred that all factors in instrument performance are verified. In effect, use of this test method will verify the instrument performance for applications involving spherical particles of known refractive index where the near-forward light scattering properties are accurately modeled by the instrument data processing and data reduction software. The precision and bias limits presented herein are, therefore, estimates of the instrument performance under ideal conditions. Nonideal factors that could be present in actual applications and that could significantly increase the bias errors of laser diffraction instruments include vignetting (that is, where light scattered at large angles by particles far away from the receiving lens does not pass through the receiving lens and therefore does not reach the detector plane), the presence of nonspherical particles, the presence of particles of unknown refractive index, and multiple scattering.

1.2 This test method shall be used as a significant test of the instrument performance. While the procedure is not designed for extensive calibration adjustment of an instrument, it shall be used to verify quantitative performance on an ongoing basis, to compare one instrument performance with that of another, and to provide error limits for instruments tested.

1.3 This test method provides an indirect measurement of some of the important parameters controlling the results in particle sizing by laser diffraction. A determination of all parameters affecting instrument performance would come under a calibration adjustment procedure.

1.4 This test method shall be performed on a periodic and regular basis, the frequency of which depends on the physical environment in which the instrumentation is used. Thus, units handled roughly or used under adverse conditions (for example, exposed to dust, chemical vapors, vibration, or combinations thereof) shall undergo a calibration verification more frequently than those not exposed to such conditions. This procedure shall be performed after any significant repairs are made on an instrument, such as those involving the optics, detector, or electronics.

1.5 The values stated in SI units are to be regarded as the standard.

1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Committee
E 29
DocumentType
Test Method
Pages
12
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy

ISO 13320:2009 Particle size analysis Laser diffraction methods

View more information
US$83.00
Excluding Tax where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.