• There are no items in your cart

ASTM C 1239 : 2006

Superseded
Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics
Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Language(s)

English

Published date

01-01-2006

1.1 This practice covers the evaluation and subsequent reporting of uniaxial strength data and the estimation of probability distribution parameters for advanced ceramics that fail in a brittle fashion. The failure strength of advanced ceramics is treated as a continuous random variable. Typically, a number of test specimens with well-defined geometry are failed under well-defined isothermal forcing conditions. The force at which each test specimen fails is recorded. The resulting failure stresses are used to obtain parameter estimates associated with the underlying population distribution. This practice is restricted to the assumption that the distribution underlying the failure strengths is the two-parameter Weibull distribution with size scaling. Furthermore, this practice is restricted to test specimens (tensile, flexural, pressurized ring, etc.) that are primarily subjected to uniaxial stress states. Section 8 outlines methods to correct for bias errors in the estimated Weibull parameters and to calculate confidence bounds on those estimates from data sets where all failures originate from a single flaw population (that is, a single failure mode). In samples where failures originate from multiple independent flaw populations (for example, competing failure modes), the methods outlined in Section 8 for bias correction and confidence bounds are not applicable.

1.2 Measurements of the strength at failure are taken for one of two reasons: either for a comparison of the relative quality of two materials, or the prediction of the probability of failure (or, alternatively, the fracture strength) for a structure of interest. This practice will permit estimates of the distribution parameters that are needed for either. In addition, this practice encourages the integration of mechanical property data and fractographic analysis.

1.3 This practice includes the following:

1.4 The values stated in SI units are to be regarded as the standard per IEEE/ASTM SI 10.

Committee
C 28
DocumentType
Standard Practice
Pages
19
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

ASTM C 1368 : 2018 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Rate Strength Testing at Ambient Temperature
ASTM C 1783 : 2015 Standard Guide for Development of Specifications for Fiber Reinforced Carbon-Carbon Composite Structures for Nuclear Applications
ASTM C 1819 : 2015 Standard Test Method for Hoop Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramic Composite Tubular Test Specimens at Ambient Temperature Using Elastomeric Inserts
ASTM C 1323 : 2016 Standard Test Method for Ultimate Strength of Advanced Ceramics with Diametrally Compressed C-Ring Specimens at Ambient Temperature
ASTM C 1341 : 2013 : R2018 Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites
ASTM C 1557 : 2014 Standard Test Method for Tensile Strength and Young’s Modulus of Fibers
ASTM C 1863 : 2018 Standard Test Method for Hoop Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramic Composite Tubular Test Specimens at Ambient Temperature Using Direct Pressurization
ASTM C 1869 : 2018 Standard Test Method for Open-Hole Tensile Strength of Fiber-Reinforced Advanced Ceramic Composites
ASTM F 603 : 2012 : R2016 Standard Specification for High-Purity Dense Aluminum Oxide for Medical Application
ASTM C 1322 : 2015 : R2019 Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics
ASTM C 1793 : 2015 Standard Guide for Development of Specifications for Fiber Reinforced Silicon Carbide-Silicon Carbide Composite Structures for Nuclear Applications
ASTM F 2393 : 2012 : R2016 Standard Specification for High-Purity Dense Magnesia Partially Stabilized Zirconia (Mg-PSZ) for Surgical Implant Applications
ASTM C 1683 : 2010 : R2019 Standard Practice for Size Scaling of Tensile Strengths Using Weibull Statistics for Advanced Ceramics
ASTM C 1773 : 2017 Standard Test Method for Monotonic Axial Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramic Tubular Test Specimens at Ambient Temperature
ASTM C 1674 : 2016 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
ASTM C 1495 : 2016 Standard Test Method for Effect of Surface Grinding on Flexure Strength of Advanced Ceramics
ASTM C 1275 : 2018 Standard Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature
ASTM C 1161 : 2018 Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
ASTM D 7972 : 2014 Standard Test Method for Flexural Strength of Manufactured Carbon and Graphite Articles Using Three-Point Loading at Room Temperature
ASTM C 1468 : 2019 : REV A Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature
ASTM C 1834 : 2016 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Elevated Temperatures
ASTM C 1273 : 2018 Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures
ASTM C 1684 : 2018 Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature—Cylindrical Rod Strength
ASTM C 1465 : 2008 : R2019 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures
ASTM C 1211 : 2018 Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures
ASTM C 1366 : 2004 : R2013 Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Elevated Temperatures

View more information
US$83.00
Excluding Tax where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.