• There are no items in your cart

ASTM C 1322 : 2002 : REV A

Superseded
Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics
Available format(s)

Hardcopy , PDF

Superseded date

11-11-2014

Language(s)

English

Published date

12-10-2002

1.1 The objective of this practice is to provide an efficient and consistent methodology to locate and characterize fracture origins in advanced ceramics. It is applicable to advanced ceramics which are brittle; that is, the material adheres to Hooke's Law up to fracture. In such materials, fracture commences from a single location which is termed the fracture origin. The fracture origin in brittle ceramics normally consists of some irregularity or singularity in the material which acts as a stress concentrator. In the parlance of the engineer or scientist, these irregularities are termed flaws or defects. The latter should not be construed to mean that the material has been prepared improperly or is somehow faulty.

1.2 Although this practice is primarily intended for laboratory test piece analysis, the general concepts and procedures may be applied to component failure analyses as well. In many cases, component failure analysis may be aided by cutting laboratory test pieces out of the component. Information gleaned from testing the laboratory pieces (for example, flaw types, general fracture features, fracture mirror constants) may then aid interpretation of component fractures. For more information on component fracture analysis, see Ref (1).

1.3 This practice supersedes Military Handbook 790.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Committee
C 28
DocumentType
Standard Practice
Pages
50
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

ASTM C 1161 : 2018 Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
ASTM D 7972 : 2014 Standard Test Method for Flexural Strength of Manufactured Carbon and Graphite Articles Using Three-Point Loading at Room Temperature
ASTM C 1834 : 2016 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Elevated Temperatures
ASTM C 1323 : 2016 Standard Test Method for Ultimate Strength of Advanced Ceramics with Diametrally Compressed C-Ring Specimens at Ambient Temperature
ASTM C 1862 : 2017 Standard Test Method for the Nominal Joint Strength of End-Plug Joints in Advanced Ceramic Tubes at Ambient and Elevated Temperatures
ASTM C 1273 : 2018 Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures
ASTM F 561 : 2019 Standard Practice for Retrieval and Analysis of Medical Devices, and Associated Tissues and Fluids
ASTM C 1684 : 2018 Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature—Cylindrical Rod Strength
ASTM C 1465 : 2008 : R2019 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures
ASTM C 1211 : 2018 Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures
ASTM C 1421 : 2018 Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature
ASTM C 1366 : 2004 : R2013 Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Elevated Temperatures
ASTM C 1361 : 2010 : R2019 Standard Practice for Constant-Amplitude, Axial, Tension-Tension Cyclic Fatigue of Advanced Ceramics at Ambient Temperatures
ASTM C 1678 : 2010 : R2015 Standard Practice for Fractographic Analysis of Fracture Mirror Sizes in Ceramics and Glasses
ASTM C 1683 : 2010 : R2019 Standard Practice for Size Scaling of Tensile Strengths Using Weibull Statistics for Advanced Ceramics
ASTM C 1368 : 2018 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Rate Strength Testing at Ambient Temperature
ASTM C 1495 : 2016 Standard Test Method for Effect of Surface Grinding on Flexure Strength of Advanced Ceramics
ASTM C 1576 : 2005 : R2017 Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Ambient Temperature

View more information
US$117.00
Excluding Tax where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.