• There are no items in your cart

ASTM D 6562 : 2020

Current

Current

The latest, up-to-date edition.

Standard Test Method for Determination of Gaseous Hexamethylene Diisocyanate (HDI) in Air with 9-(N-methylaminomethyl) Anthracene Method (MAMA) in the Workplace

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

06-01-2020

1.1This test method covers the determination of gaseous hexamethylene diisocyanate (HDI) in air samples collected from workplace and ambient atmospheres. The method described in this test method collects separate fractions. One fraction will be dominated by vapor, and the other fraction will be dominated by aerosol. The results obtained from the analysis of the separate fractions do not necessarily represent the true partition of the measured HDI physical phases, and should only be considered a representation of the general trend in the physical phase partition within samples. The analyses of the two fractions are different, and are provided in separate, linked, standards to avoid confusion. This test method is principally used to determine short term exposure (15 min) of HDI in workplace environments for personal monitoring or in ambient air. The analysis of the aerosol fraction is performed separately, as described in Test Method D6561.

1.2Differential air sampling is performed with a segregating device. The vapor fraction is collected on a glass fiber filter (GFF) impregnated with 9-(N-methylaminomethyl) anthracene (MAMA).

1.3The range of application of this test method has been validated from 0.006 to 1.12 μg of monomeric HDI/2.0 mL of desorption solution, which corresponds to concentrations equivalent to 0.0004 to 0.075 mg/m3 of HDI based on a 15 L air sample. Those concentrations correspond to a range of vapor phase concentrations from 0.06 ppb(V) to 11 ppb(V) and cover the established threshold limit value (TLV) value of 5 ppb(V).

1.4The quantification limit for the monomeric HDI, using the UV detection, has been established as 0.012 μg/2 mL of desorption solution and as 0.008 μg/2 mL, using the fluorescence detector. These limits correspond to 0.0008 mg/m3 and 0.0005 mg/m3 respectively for an air sampled volume of 15 L. These values are equal to ten times the standard deviation (SD) obtained from ten measurements carried out on a standard solution in contact with the GFF, whose concentration of 0.02 μg/2 mL is close to the expected detection limit.

1.5The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 9 for additional hazards.

1.7This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Committee
D 22
DocumentType
Test Method
Pages
6
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

ASTM D 5337 : 2023 Standard Practice for Setting and Verifying the Flow Rate of Personal Sampling Pumps
ASTM D 5337 : 2011 : R2016 Standard Practice for Flow Rate Adjustment of Personal Sampling Pumps

View more information
US$63.00
Excluding Tax where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.