• ASTM D 4945 : 2017

    Current The latest, up-to-date edition.
    Add to Watchlist
    This Standard has been added successfully to your Watchlist.
    Please visit My Watchlist to see all standards that you are watching.
    Please log in or to add this standard to your Watchlist.
    We could not add this standard to your Watchlist.
    Please retry or contact support for assistance.
    We could not add this standard to your Watchlist.
    Please retry or contact support for assistance.
    You have already added this standard to your Watchlist.
    Visit My Watchlist to view the full list.

    Standard Test Method for High-Strain Dynamic Testing of Deep Foundations

    Available format(s):  Hardcopy, PDF

    Language(s):  English

    Published date:  11-01-2017

    Publisher:  American Society for Testing and Materials

    Add to Watchlist

    Add To Cart

    Abstract - (Show below) - (Hide below)

    This dynamic test method covers the procedure for applying an axial impact force with a pile driving hammer or a large drop weight that will cause a relatively high strain at the top of an individual vertical or inclined deep foundation unit, and for measuring the subsequent force and velocity response of that deep foundation unit.

    Scope - (Show below) - (Hide below)

    1.1This dynamic test method covers the procedure for applying an axial impact force with a pile driving hammer or a large drop weight that will cause a relatively high strain at the top of an individual vertical or inclined deep foundation unit, and for measuring the subsequent force and velocity response of that deep foundation unit. While in this standard force and velocity are referenced as “measured,” they are typically derived from measured strain and acceleration values. High-strain dynamic testing applies to any deep foundation unit, also referred to herein as a “pile,” which functions in a manner similar to a driven pile or a cast-in-place pile regardless of the method of installation, and which conforms with the requirements of this test method.

    1.2This standard provides minimum requirements for dynamic testing of deep foundations. Plans, specifications, or provisions (or combinations thereof) prepared by a qualified engineer may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in responsible charge of the foundation design, referred to herein as the “Engineer”, shall approve any deviations, deletions, or additions to the requirements of this standard.

    1.3The proper conduct and evaluation of high-strain dynamic tests requires special knowledge and experience. A qualified engineer should directly supervise the acquisition of field data and the interpretation of the test results so as to predict the actual performance and adequacy of deep foundations used in the constructed foundation. A qualified engineer shall approve the apparatus used for applying the impact force, driving appurtenances, test rigging, hoist equipment, support frames, templates, and test procedures.

    1.4The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.

    1.5Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.

    1.6All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

    1.6.1The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

    1.7This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precautionary statement, see Note 4.

    1.8This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    General Product Information - (Show below) - (Hide below)

    Committee D 18
    Document Type Test Method
    Publisher American Society for Testing and Materials
    Status Current
    Supersedes

    Standards Referenced By This Book - (Show below) - (Hide below)

    ASTM D 6760 : 2016 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing

    Standards Referencing This Book - (Show below) - (Hide below)

    ASTM D 653 : 2007 Standard Terminology Relating to Soil, Rock, and Contained Fluids
    ASTM D 3740 : 2012 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM C 469 : 1994 Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression
    ASTM D 3740 : 2019 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 3740 : 2004 : REV A : EDT 1 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 3740 : 2008 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 6026 : 2013 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 6026 : 2006 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 3740 : 1999 : REV C Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 198 : 2021 Standard Test Methods of Static Tests of Lumber in Structural Sizes
    ASTM D 653 : 2020 : EDT 1 Standard Terminology Relating to Soil, Rock, and Contained Fluids
    ASTM D 6026 : 1999 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 3740 : 2011 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 6026 : 2001 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 3740 : 2010 Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 653 : 2021 : REV A Standard Terminology Relating to Soil, Rock, and Contained Fluids
    ASTM D 6026 : 1996 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 3740 : 2004 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 3689 : 1990 : R1995 Standard Test Method for Individual Piles Under Static Axial Tensile Load (Withdrawn 2005)
    ASTM D 198 : 2021 : REV A Standard Test Methods of Static Tests of Lumber in Structural Sizes
    ASTM D 3740 : 2001 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 653 : 2021 Standard Terminology Relating to Soil, Rock, and Contained Fluids
    ASTM D 653 : 2021 : REV B Standard Terminology Relating to Soil, Rock, and Contained Fluids
    ASTM D 198 : 2022 Standard Test Methods of Static Tests of Lumber in Structural Sizes
    ASTM D 6026 : 1996 : EDT 1 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 3740 : 2012 : REV A Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 3740 : 2003 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    ASTM D 6026 : 2021 Standard Practice for Using Significant Digits and Data Records in Geotechnical Data
    ASTM D 6026 : 2001 Standard Practice for Using Significant Digits in Geotechnical Data
    ASTM D 3689 : 2007 Standard Test Methods for Deep Foundations Under Static Axial Tensile Load
    ASTM D 198 : 2015 Standard Test Methods of Static Tests of Lumber in Structural Sizes
    ASTM D 3740 : 2004 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
    • Access your standards online with a subscription

      Features

      • Simple online access to standards, technical information and regulations
      • Critical updates of standards and customisable alerts and notifications
      • Multi - user online standards collection: secure, flexibile and cost effective