• There are no items in your cart

ASTM E 2929 : 2018

Superseded
Superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

View Superseded by
superseded

A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.

Standard Practice for Guided Wave Testing of Above Ground Steel Piping with Magnetostrictive Transduction
Available format(s)

Hardcopy , PDF

Superseded date

12-23-2022

Language(s)

English

Published date

06-18-2018

1.1 This practice provides a guide for the use of waves generated using magnetostrictive transduction for guided wave testing (GWT) welded tubulars. Magnetostrictive materials transduce or convert time varying magnetic fields into mechanical energy. As a magnetostrictive material is magnetized, it strains. Conversely, if an external force produces a strain in a magnetostrictive material, the material’s magnetic state will change. This bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction capability that can be used for both actuation and sensing devices. 1.2 GWT utilizes ultrasonic guided waves in the 10 to approximately 250 kHz range, sent in the axial direction of the pipe, to non-destructively test pipes for discontinuities or other features by detecting changes in the cross-section or stiffness of the pipe, or both. 1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of discontinuities. However, an estimate of the severity of the discontinuity can be obtained. 1.4 This practice is intended for use with tubular carbon steel products having nominal pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.). 1.5 This practice only applies to GWT of basic pipe configuration. This includes pipes that are straight, constructed of a single pipe size and schedules, fully accessible at the test location, jointed by girth welds, supported by simple contact supports and free of internal, or external coatings, or both; the pipe may be insulated or painted. 1.6 This practice provides a general practice for performing the examination. The interpretation of the guided wave data obtained is complex and training is required to properly perform data interpretation. 1.7 This practice does not establish an acceptance criterion. Specific acceptance criteria shall be specified in the contractual agreement by the cognizant engineer. 1.8 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations ssued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

1.1This practice provides a guide for the use of waves generated using magnetostrictive transduction for guided wave testing (GWT) welded tubulars. Magnetostrictive materials transduce or convert time varying magnetic fields into mechanical energy. As a magnetostrictive material is magnetized, it strains. Conversely, if an external force produces a strain in a magnetostrictive material, the material’s magnetic state will change. This bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction capability that can be used for both actuation and sensing devices.

1.2GWT utilizes ultrasonic guided waves in the 10 to approximately 250 kHz range, sent in the axial direction of the pipe, to non-destructively test pipes for discontinuities or other features by detecting changes in the cross-section or stiffness of the pipe, or both.

1.3GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of discontinuities. However, an estimate of the severity of the discontinuity can be obtained.

1.4This practice is intended for use with tubular carbon steel products having nominal pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.).

1.5This practice only applies to GWT of basic pipe configuration. This includes pipes that are straight, constructed of a single pipe size and schedules, fully accessible at the test location, jointed by girth welds, supported by simple contact supports and free of internal, or external coatings, or both; the pipe may be insulated or painted.

1.6This practice provides a general practice for performing the examination. The interpretation of the guided wave data obtained is complex and training is required to properly perform data interpretation.

1.7This practice does not establish an acceptance criterion. Specific acceptance criteria shall be specified in the contractual agreement by the cognizant engineer.

1.8Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.9This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.10This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Committee
E 07
DocumentType
Standard Practice
Pages
11
PublisherName
American Society for Testing and Materials
Status
Superseded
SupersededBy
Supersedes

ASTM E 1316 : 2022 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2011 : REV B Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2015 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2009 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2008 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2010 : REV C Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2020 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2017 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2013 : REV C Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2000 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 543 : 2021 Standard Specification for Agencies Performing Nondestructive Testing
ASTM E 1316 : 2019 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2014 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2013 : REV B Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2018 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2011 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2007 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2015 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2019 : REV B Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2021 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2013 : REV D Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2000 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2019 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2001 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2003 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2018 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2006 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 543 : 2015 Standard Specification for Agencies Performing Nondestructive Testing
ASTM E 1316 : 2016 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2021 : REV D Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2002 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2014 : EDT 1 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2010 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2022 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2013 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2021 : REV B Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2017 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2016 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2009 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2002 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2004 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2007 : REV C Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2010 : REV B Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2013 : REV A Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2021 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2007 : REV B Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2005 Standard Terminology for Nondestructive Testing
ASTM E 1316 : 2004 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2021 : REV C Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2007 Standard Terminology for Nondestructive Examinations
ASTM E 1316 : 2012 Standard Terminology for Nondestructive Examinations

View more information
US$83.00
Excluding Tax where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.