• There are no items in your cart

BS EN 61709:2017

Current
Current

The latest, up-to-date edition.

Electric components. Reliability. Reference conditions for failure rates and stress models for conversion
Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

08-08-2017

IEC 61709:2017 is also available as IEC 61709:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 61709:2017 gives guidance on the use of failure rate data for reliability prediction of electric components used in equipment. The method presented in this document uses the concept of reference conditions which are the typical values of stresses that are observed by components in the majority of applications. Reference conditions are useful since they provide a known standard basis from which failure rates can be modified to account for differences in environment from the environments taken as reference conditions. Each user can use the reference conditions defined in this document or use their own. When failure rates stated at reference conditions are used it allows realistic reliability predictions to be made in the early design phase. The stress models described herein are generic and can be used as a basis for conversion of failure rate data given at these reference conditions to actual operating conditions when needed and this simplifies the prediction approach. Conversion of failure rate data is only possible within the specified functional limits of the components. This document also gives guidance on how a database of component failure data can be constructed to provide failure rates that can be used with the included stress models. Reference conditions for failure rate data are specified, so that data from different sources can be compared on a uniform basis. If failure rate data are given in accordance with this document then additional information on the specified conditions can be dispensed with. This document does not provide base failure rates for components – rather it provides models that allow failure rates obtained by other means to be converted from one operating condition to another operating condition. The prediction methodology described in this document assumes that the parts are being used within its useful life. The methods in this document have a general application but are specifically applied to a selection of component types as defined in Clauses 6 to 20 and I.2. This third edition cancels and replaces the second edition, published in 2011. This edition constitutes a technical revision. This third edition is a merger of IEC 61709:2011 and IEC TR 62380:2004.
This edition includes the following significant technical changes with respect to the previous edition: addition of 4.5 Components choice, 4.6 Reliability growth during the deployment phase of new equipment, 4.7 How to use this document, and of Clause 19 Printed circuit boards (PCB) and Clause 20 Hybrid circuits with respect to IEC TR 62380; addition of failure modes of components in Annex A; modification of Annex B, Thermal model for semiconductors, adopted and revised from IEC TR 62380; modification of Annex D, Considerations on mission profile; modification of Annex E, Useful life models, adopted and revised from IEC TR 62380; revision of Annex F (former B.2.6.4), Physics of failure; addition of Annex G (former Annex C), Considerations for the design of a data base on failure rates, complemented with parts of IEC 60319; addition of Annex H, Potential sources of failure rate data and methods of selection; addition of Annex J, Presentation of component reliability data, based on IEC 60319.
Keywords: failure rate data, reliability prediction of electric components

Committee
DS/1
DevelopmentNote
Renumbers and supersedes BS 5760-18(1997). 2000 version incorporates amendment 10390 to BS 5760-18(1997) Supersedes 91/89537 DC. (01/2006) Supersedes 09/30184127 DC. (08/2011) Supersedes 15/30310531 DC. (08/2017)
DocumentType
Standard
Pages
128
PublisherName
British Standards Institution
Status
Current
Supersedes

Standards Relationship
IEC 61709 : 3.0 Identical
NF EN 61709 : 2017 Identical
NBN EN 61709 : 2011 Identical
IEC 61709:2017 Identical
I.S. EN 61709:2017 Identical
SN EN 61709 : 2017 Identical
UNE-EN 61709:2014 Identical
DIN EN 61709:2015-01 (Draft) Identical
EN 61709:2017 Identical
EN 62059-32-1:2012 Identical

03/101534 DC : DRAFT JAN 2003 BS 5760-4 - RELIABILITY OF SYSTEMS, EQUIPMENT AND COMPONENTS - PART 4: GUIDE TO THE SPECIFICATION OF DEPENDABILITY REQUIREMENTS
BS 5760-4:2003 Reliability of systems, equipment and components Guide to the specification of dependability requirements

IEC 62308:2006 Equipment reliability - Reliability assessment methods
IEC 61812-1:2011 Time relays for industrial and residential use - Part 1: Requirements and tests
EN 300 019-1-5 : 2.1.4 ENVIRONMENTAL ENGINEERING (EE); ENVIRONMENTAL CONDITIONS AND ENVIRONMENTAL TESTS FOR TELECOMMUNICATIONS EQUIPMENT; PART 1-5: CLASSIFICATION OF ENVIRONMENTAL CONDITIONS; GROUND VEHICLE INSTALLATIONS
IEC 60319:1999 Presentation and specification of reliability data for electronic components
IEC PAS 62435:2005 Electronic components - Long-duration storage of electronic components - Guidance for implementation
IEC 60300-3-3:2017 Dependability management - Part 3-3: Application guide - Life cycle costing
IEC 61649:2008 Weibull analysis
IEC 62741:2015 Demonstration of dependability requirements - The dependability case
IEC 61014:2003 Programmes for reliability growth
IEC 60050-151:2001 International Electrotechnical Vocabulary (IEV) - Part 151: Electrical and magnetic devices
IEC 61360-4:2005 Standard data element types with associated classification scheme for electric components - Part 4: IEC reference collection of standard data element types and component classes
IEC 60605-6:2007 Equipment reliability testing - Part 6: Tests for the validity and estimation of the constant failure rate and constant failure intensity
ETS 300 200019-1-4 : 20001 EQUIPMENT ENGINEERING (EE); ENVIRONMENTAL CONDITIONS AND ENVIRONMENTAL TESTS FOR TELECOMMUNICATIONS EQUIPMENT - CLASSIFICATION OF ENVIRONMENTAL CONDITIONS - STATIONARY USE AT NON-WEATHERPROTECTED LOCATIONS
VITA 51.2 : 2016 PHYSICS OF FAILURE RELIABILITY PREDICTIONS
IEC 60721-3-7:1995+AMD1:1996 CSV Classification of environmental conditions - Part 3-7: Classification of groups of environmental parameters and their severities - Portable and non-stationary use
IEC 60721-3-5:1997 Classification of environmental conditions - Part 3: Classificationof groups of environmental parameters and their severities -Section 5: Ground vehicle installations
EN 300 019-1-7 : 2.1.4 ENVIRONMENTAL ENGINEERING (EE); ENVIRONMENTAL CONDITIONS AND ENVIRONMENTAL TESTS FOR TELECOMMUNICATIONS EQUIPMENT; PART 1-7: CLASSIFICATION OF ENVIRONMENTAL CONDITIONS; PORTABLE AND NON-STATIONARY USE
ISO 10303-31:1994 Industrial automation systems and integration Product data representation and exchange Part 31: Conformance testing methodology and framework: General concepts
IEC TR 62380:2004 Reliability data handbook - Universal model for reliability prediction of electronics components, PCBs and equipment
IEC 61360-1:2017 Standard data element types with associated classification scheme - Part 1: Definitions - Principles and methods
IEC 60650:1979 Analogue counting ratemeters. Characteristics and test methods
ISO 10303-11:2004 Industrial automation systems and integration Product data representation and exchange Part 11: Description methods: The EXPRESS language reference manual
IEC 61810-2:2017 Electromechanical elementary relays - Part 2: Reliability
IEC 61163-2:1998 Reliability stress screening - Part 2: Electronic components
DEFSTAN 00-42(PT3)/4(2011) : 2011 RELIABILITY AND MAINTAINABILITY ASSURANCE GUIDE - PART 3: R&M CASE
IEC 60300-3-2:2004 Dependability management - Part 3-2: Application guide - Collection of dependability data from the field
IEC 61810-2-1:2017 Electromechanical elementary relays - Part 2-1: Reliability - Procedure for the verification of B<sub>10</sub> values
IEC 60747-12-2:1995 Semiconductor devices - Part 12: Optoelectronic devices - Section 2: Blank detail specification for laser diode modules with pigtail for fibre optic systems and sub-systems
IEC 61703:2016 Mathematical expressions for reliability, availability, maintainability and maintenance support terms
IEC TR 60943:1998+AMD1:2008 CSV Guidance concerning the permissible temperature rise for parts of electrical equipment, in particular for terminals
IEC 60747-1:2006+AMD1:2010 CSV Semiconductor devices - Part 1: General
MIL-C-18312 Revision G:2013 CAPACITOR, FIXED, METALLIZED (PAPER-PLASTIC, OR PLASTIC FILM) DIELECTRIC, DIRECT CURRENT (HERMETICALLY SEALED IN METAL CASES), GENERAL SPECIFICATION FOR
IEC 60721-3-3:1994+AMD1:1995+AMD2:1996 CSV Classification of environmental conditions - Part 3-3: Classification of groups of environmental parameters and their severities - Stationary use at weatherprotected locations
EN 300 019-1-8 : 2.1.4 ENVIRONMENTAL ENGINEERING (EE); ENVIRONMENTAL CONDITIONS AND ENVIRONMENTAL TESTS FOR TELECOMMUNICATIONS EQUIPMENT; PART 1-8: CLASSIFICATION OF ENVIRONMENTAL CONDITIONS; STATIONARY USE AT UNDERGROUND LOCATIONS
IEC 60050-521:2002 International Electrotechnical Vocabulary (IEV) - Part 521: Semiconductor devices and integrated circuits
IEC 61710:2013 Power law model - Goodness-of-fit tests and estimation methods
ETS 300 200019-1-3 : 20001 EQUIPMENT ENGINEERING (EE); ENVIRONMENTAL CONDITIONS AND ENVIRONMENTAL TESTS FOR TELECOMMUNICATIONS EQUIPMENT - CLASSIFICATION OF ENVIRONMENTAL CONDITIONS - STATIONARY USE AT WEATHERPROTECTED LOCATIONS
IEC 60300-3-5:2001 Dependability management - Part 3-5: Application guide - Reliability test conditions and statistical test principles

View more information
US$383.32
Excluding Tax where applicable

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.