Australian/New Zealand Standard™

Electrical equipment in mines and quarries—Surface installations and associated processing plant
AS/NZS 3007:2013

This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee EL-023, Electrical Equipment for Mines and Quarries. It was approved on behalf of the Council of Standards Australia on 29 April 2013 and on behalf of the Council of Standards New Zealand on 23 April 2013. This Standard was published on 24 June 2013.

The following are represented on Committee EL-023:

Australian Cablemakers Association
Australian Chamber of Commerce and Industry
Australian Coal Association
Australian Industry Group
Aviation and Marine Engineers Association
Consult Australia
Department of Mines and Petroleum, WA
Department of Natural Resources and Mines, Qld
Mining Electrical and Mining Mechanical Engineering Society
Ministry of Business, Innovation and Employment, New Zealand
National Association of Testing Authorities Australia
NSW Department of Trade and Investment, Regional Infrastructure and Services
University of Newcastle
WorkCover New South Wales

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.

For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of either Standards Australia or Standards New Zealand at the address shown on the back cover.

This Standard was issued in draft form for comment as DR AS/NZS 3007.
PREFACE

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee EL-023, Electrical Equipment for Mines and Quarries, to supersede Parts 1 to 5 of AS 3007—2004.

The objective of this Standard is to set out guiding principles for the design, installation, and operation of electrical equipment in mines and quarries so as to ensure the safety of persons, livestock and property, and the proper functioning of the plant.

Australian mining operations typically involve most aspects of electrical engineering, ranging from such areas as high voltage transmission to the control of undesirable static electricity. A substantial number of Standards therefore apply to such work. This Standard consolidates these requirements together into the one document.

This edition of the Standard differs from the previous editions in the following significant ways:

(a) This Standard incorporates the requirements for the surface of underground mines in addition to surface mines, quarries and associated processing plant.

(b) Where issues are adequately covered by AS/NZS 3000, AS 2067, and AS 60204, they have been removed from this version of AS/NZS 3007 to prevent conflict.

(c) Relevant parts of AS/NZS 4871 (series) that apply to installations covered by the scope of this Standard have been included.

(d) Particular requirements have been included to address known deficiencies in installation and practices.

(e) Definitions have been aligned with other key Standards.

(f) Requirements for transportable/relocatable distribution and control equipment have been added.

(g) The requirements for flexible feeder, trailing, and reeling cables have been expanded.

(h) The requirements for overhead lines have been expanded.

(i) The requirements for specific types of power supplies have been updated.

(j) Requirements for labelling have been updated.

(k) Requirements for managing change within the mining operation have been added.

(l) Information about the power supply to safety critical infrastructure for underground mines has been added.

(m) Requirements for reclaim and transfer tunnels have been added.

(n) Information about variable speed drives has been added.

(o) Appendix F has been added to provide earthing requirements for mines. (This Appendix will be deleted by amendment when AS 2067 has been amended to include mine earthing.)

In recognition of changes introduced in this revision of this Standard, existing installations and equipment should be reviewed against the requirements of this Standard.

Descriptions of TN, TT and IT power supply systems have been retained as they are not found elsewhere within standards.

The terms ‘normative’ and ‘informative’ are used to define the application of the appendix to which they apply. A normative appendix is an integral part of a standard, whereas an informative appendix is only for information and guidance.

Statements expressed in mandatory terms in notes to tables are deemed to be requirements of this Standard.
CONTENTS

SECTION 1 SCOPE AND GENERAL

1.1 SCOPE	7
1.2 REFERENCED DOCUMENTS	8
1.3 DEFINITIONS	11

SECTION 2 GENERAL REQUIREMENTS

2.1 RISK MANAGEMENT	18
2.2 LOW VOLTAGE AND EXTRA LOW VOLTAGE INSTALLATIONS	18
2.3 HIGH VOLTAGE INSTALLATIONS	18
2.4 EARTHING	18
2.5 REMOVAL OF POWER AT A CLOSED ELECTRICAL OPERATING AREA	18
2.6 ELECTRICAL MACHINERY	19
2.7 PROTECTION FROM NON-ELECTRICAL HAZARDS	19
2.8 PROTECTION FROM ELECTRICAL HAZARDS	19
2.9 ISOLATING SWITCHES (DISCONNECTORS)	20
2.10 CIRCUIT-BREAKERS	21
2.11 CABLES	21
2.12 SYSTEM DESIGN	21
2.13 GENERAL REQUIREMENTS FOR ELECTRICAL COMPONENTS	22

SECTION 3 PROTECTION AGAINST OVERLOADS AND FAULTS

3.1 INTRODUCTION	25
3.2 GENERAL RULE	25
3.3 AUTOMATIC INTERRUPTION—PROTECTION AGAINST OVERCURRENT DUE TO OVERLOAD	25
3.4 COORDINATION OF OVERLOAD AND SHORT-CIRCUIT PROTECTION AFFORDED BY SEPARATE DEVICES	26
3.5 EARTH FAULT PROTECTION ON IMPEDANCE EARTHED IT SYSTEMS	26

SECTION 4 ELECTRICAL WIRING OF EQUIPMENT AND MACHINERY

4.1 GENERAL	28
4.2 ELECTRICAL ISOLATION	28
4.3 ISOLATING FOR MECHANICAL MAINTENANCE	28
4.4 REMOTE CONTROL	28
4.5 PENDANT CONTROL (UMBILICAL CORD)	28
4.6 CABLELING	29
4.7 ROTATING ELECTRICAL MACHINES	29
4.8 MOBILE MACHINERY CABLE ATTACHMENTS	30
4.9 CABLE REELS	30
4.10 MOBILE MACHINERY LIGHTING SYSTEMS	31
4.11 CONTROL CIRCUITS AND CONTROL DEVICES	31

SECTION 5 TRANSPORTABLE/RELOCATABLE DISTRIBUTION AND CONTROL EQUIPMENT

5.1 GENERAL	34
5.2 TRANSPORTABLE SUBSTATIONS	35
5.3 DISTRIBUTION AND CONTROL EQUIPMENT	38
5.4 FLEXIBLE CABLE TERMINATION BOXES	38
SECTION 6 FLEXIBLE FEEDER, TRAILING AND REELING CABLE SELECTION, APPLICATION AND USE

6.1 DESIGN OF CABLES ... 39
6.2 POWER CABLE TWIST LIMITATION 40
6.3 CABLE CONNECTORS ... 41
6.4 MOVING CABLES ... 41
6.5 INSTALLATION OF CABLES 43
6.6 CABLE REPAIR .. 48
6.7 PRECAUTIONS DURING LIGHTNING STORMS 48

SECTION 7 OVERHEAD LINES

7.1 GENERAL ... 49
7.2 EASEMENTS ... 49
7.3 MINE OWNED/OPERATED OHLS 50
7.4 OHL CORRIDORS AND WORK NEAR OHLS 51
7.5 CLEARANCE TO MOBILE PLANT 53
7.6 CLEARANCES TO HAND-HELD OBJECTS 55
7.7 CLEARANCE TO EXCAVATIONS 55
7.8 CLEARANCE TO BLASTING OPERATIONS 55
7.9 CLEARANCE TO STOCKPILE AND TAILING AREAS 56
7.10 CLEARANCE TO STORAGE AREAS 56
7.11 CLEARANCE TO STRUCTURES AND PEOPLE TRANSIT AREAS ... 56
7.12 REDUCTION OF CLEARANCES 56
7.13 MOVING OF OHLS .. 56
7.14 PRECAUTIONS DURING LIGHTNING STORMS 57
7.15 OPERATIONS INVOLVING LONG METALLIC STRUCTURES ... 57
7.16 CLEARING VEGETATION NEAR OHLS 57
7.17 MINE SITE INFORMATION ON OHLS 57
7.18 EMERGENCY RESPONSE PLAN FOR CONTACT WITH OHLS ... 57
7.19 EMERGENCY ACTION IF THERE IS AN ACCIDENT .. 58

SECTION 8 SPECIFIC POWER SUPPLIES

8.1 POWER SUPPLIES FROM MOBILE MACHINERY 59
8.2 SELF-CONTAINED POWER SYSTEMS 59
8.3 WELDING MACHINES AND EQUIPMENT 59
8.4 INVERTERS AND UNINTERRUPTABLE POWER SUPPLIES ... 59
8.5 RELOCATABLE BUILDINGS AND IT EARTHING SYSTEMS ... 60

SECTION 9 ELECTRICITY SUPPLY TO SAFETY CRITICAL MINE INFRASTRUCTURE FOR UNDERGROUND MINES

9.1 SAFETY CRITICAL ELECTRICAL SYSTEMS 61
9.2 CONTINUITY OF THE ELECTRICAL SUPPLY TO THE MINE ... 62
9.3 CONTINUITY OF SUPPLY TO THE UNDERGROUND WORKINGS CONTAINING SAFETY CRITICAL INFRASTRUCTURE ... 62
9.4 CONTINUITY OF SAFETY CRITICAL, ELECTRICALLY POWERED VENTILATION EQUIPMENT 64
9.5 MONITORING AND CONTROL .. 65
9.6 POWERED WINDING SYSTEMS 66
9.7 POWER SUPPLIES TO DE-WATERING AND FIREDAMP DRAINAGE PLANT AND EQUIPMENT ... 67
SECTION 10 TRANSPORT CONVEYOR SYSTEMS

10.1 GENERAL ... 68
10.2 CONVEYOR CONTROLLERS .. 68
10.3 CABLES OF MOVEABLE CONVEYORS .. 69
10.4 BELT SPlicing EQUIPMENT .. 69

SECTION 11 DEEP-WELL TYPE PUMPS AT SURFACE MINING OPERATIONS

11.1 GENERAL ... 70
11.2 RISERS AS PROTECTIVE CONDUCTORS ... 70
11.3 CONTINUED OPERATION AFTER FIRST EARTH FAULT 70
11.4 EQUIPOTENTIAL BONDING ... 70
11.5 EXEMPTION FROM INSULATION-MONITORING DEVICE 71
11.6 DOUBLE LINE TO EARTH FAULTS ... 71

SECTION 12 RECLAIM AND TRANSFER TUNNELS FOR COAL MINES

12.1 GENERAL ... 72
12.2 AUTOMATIC GAS MONITORING SYSTEM ... 72

SECTION 13 FIRE DETECTION AND PROTECTION SYSTEMS FOR ELECTRICAL AREAS

13.1 GENERAL ... 74
13.2 GENERAL PROTECTION REQUIREMENTS ... 74
13.3 ADDITIONAL REQUIREMENTS AND RECOMMENDATIONS 76

SECTION 14 STATIC ELECTRICITY, RADIOACTIVE SOURCES AND INDUCTIVE SOURCES

14.1 STATIC ELECTRICITY ... 77
14.2 ELECTROSTATIC PRECIPITATORS ... 77
14.3 RADIOACTIVE SOURCES .. 77
14.4 HAZARDS FROM INDUCTION .. 77

SECTION 15 LABELS, SIGNAGE AND INFORMATION REQUIREMENTS AND COLOUR CODING OF ENCLOSURES

15.1 GENERAL .. 78
15.2 SPECIFIC REQUIREMENTS ... 78
15.3 ENCLOSURES WITH COVERS GUARDING ACCESS TO LIVE CONDUCTORS 79
15.4 VOLTAGE IDENTIFICATION OF ELECTRICAL ENCLOSURES 79

SECTION 16 OPERATIONAL REQUIREMENTS

16.1 GENERAL ... 80
16.2 RESTRICTIONS ON ACCESS BY PERSONNEL .. 80
16.3 OPERATIONS INVOLVING PERSONNEL WORKING IN THE VICINITY OF EXPOSED LIVE PARTS ... 80
16.4 USE OF RADIO REMOTE CONTROL EQUIPMENT ... 81
16.5 OVERHEAD LINES ... 81

SECTION 17 MANAGEMENT OF ALTERATIONS TO THE MINING OPERATION

17.1 GENERAL ... 82
17.2 MANAGEMENT OF CHANGE ... 82
APPENDICES

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

- **APPENDICES**
 - A. TN, TT AND IT SYSTEMS DESCRIPTION ... 84
 - B. PROTECTIVE DEVICES AND THEIR USES ... 92
 - C. GUIDELINES FOR LOW SIGNAL LEVEL SYSTEMS AND COMMUNICATION SYSTEMS .. 102
 - D. VARIABLE SPEED DRIVES ... 107
 - E. DOCUMENTATION ... 110
 - F. EARTHING ... 112