Australian Standard®

Concrete structures
This Australian Standard was prepared by Committee BD/2, Concrete Structures. It was approved on behalf of the Council of Standards Australia on 3 June 1994 and published on 10 October 1994.

The following interests are represented on Committee BD/2:

Association of Consulting Engineers, Australia
Australian Precast Concrete Manufacturers Association
AUSTROADS
Bureau of Steel Manufacturers of Australia
Cement and Concrete Association of Australia
Concrete Institute of Australia
CSIRO, Division of Building, Construction and Engineering
Department of Housing and Construction, S.A.
Hydro-electric Commission, Tas.
Institution of Engineers, Australia
National Ash Association of Australia
National Ready Mixed Concrete Association
Steel Reinforcement Institute of Australia
University of Adelaide
University of New South Wales
University of Sydney
University of Technology, Sydney
University of Technology, W.A.
Water Board, Sydney, Illawarra and Blue Mountains

Review of Australian Standards. To keep abreast of progress in industry, Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary. It is important therefore that Standards users ensure that they are in possession of the latest edition, and any amendments thereto.

Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications; this information is supplemented each month by the magazine ‘The Australian Standard’, which subscribing members receive, and which gives details of new publications, new editions and amendments, and of withdrawn Standards.

Suggestions for improvements to Australian Standards, addressed to the head office of Standards Australia, are welcomed. Notification of any inaccuracy or ambiguity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.
Australian Standard®

Concrete structures

First published in part as AS CA2—1934.
AS A26 first published 1934.
AS CA2—1934 and AS A26—1934 revised,
 amalgamated and designated AS CA2—1958.
AS CA35 first published 1963.
AS CA2—1973 revised and redesignated
AS CA35—1973 revised and redesignated
AS 1480—1982 and AS 1481—1978 revised,

Incorporating:
Amdt 1—1996
PREFACE

This Standard was prepared by Standards Australia Committee on Concrete Structures, and first published in 1988 as an amalgamation of and to supersede, SAA 1480—1982, SAA Concrete Structures Code and AS 1481—1978, SAA Prestressed Concrete Code.

Objective of the Standard: The principal objective of the Standard is to provide users with nationally acceptable unified rules for the design and detailing of concrete structures and elements, with or without steel reinforcement or prestressing tendons, based on the principles of structural engineering mechanics. A secondary objective is to provide performance criteria against which the finished structure can be assessed for compliance with the relevant design requirements.

Background to Second Edition: Amendment No. 1 to the Standard was issued in June 1990 to take account of the new limit-state versions of Part 1 and Part 2 of AS 1170—SAA Loading code, both published in 1989 and the new Part 3—Snow loads, published in 1990. It also incorporated improvements based on user experience in implementing AS 3600.

Following a regular five-yearly review, further amendments to the Standard were approved by the Concrete Structures Committee in March 1994. These amendments take account of more recent revisions of key materials’ Standards, the 1993 publication of AS 1170.4—Earthquake loads, and incorporate additional improvements to the clarity and intent of particular requirements, based on user comments.

As a consequence of the Active Cooperation Agreement between Standards Australia (SAA) and Standards New Zealand (SNZ) regarding the preparation of joint SAA/SNZ Standards, and in view of the number and extent of the amendments to AS 3600 now involved, the SAA Concrete Structures Committee recommended that, rather than issuing further ‘green slip’ amendments, a Second Edition of AS 3600 be published which incorporated all published and approved amendments.

Objective of the Second Edition: The objective of the Second Edition is to provide users with a clean, updated version of the Standard.

Differences between AS 3600 and the Standards which it supersedes, and the principal areas affected by subsequent amendments, are briefly outlined below.

1. Differences between AS 3600 and previous Standards

Although AS 1480—1982 and AS 1481—1978 form the basis of AS 3600, it differs markedly from them in both format and content, as indicated below.

1.1 Limit state format In keeping with current ISO and SAA policy on structural design Standards, the appropriate functional states, such as strength and serviceability, and the corresponding performance limits are presented generally in the format of design action effects (bending moments, shear forces) and corresponding design resistances. Loads and load combinations are referred to AS 1170 from Section 3, and design action effects determined from analysis in accordance with Section 7. Design resistances are then determined for the various elements from Sections 8, 9 and 10 as appropriate. This represents the culmination of the advance from permissible stress design to full limit state design, which began with the introduction of the ultimate-strength method in the 1974 edition of AS 1480.

1.2 General application Requirements of the Standard have been broadened and modified where necessary, to ensure that generally they apply to reinforced members with, or without, some degree of prestressing. Requirements are given separately for unreinforced (plain) concrete, while requirements which apply only to prestressing are now included as separate clauses in the appropriate Sections.
The relevant provisions of the Standard have also been widened so that it is now suitable for design in conjunction with the Austroads Bridge Design Code or the ANZRC Railway bridge design manual, either of which will take precedence over AS 3600 for bridges under the jurisdiction of the local representative authority.

1.3 New inclusions A tiered approach to member design rules has been introduced to allow the designer more flexibility in choice of design methods to suit a particular project. Simplified rules, for common applications within prescribed limits, are generally presented first, with more complex rules having wider applications following.

Durability and fire-resistance provisions have been included as independent considerations within the body of the Standard. Previously they have been either implied in various design rules, or given only as recommendations in appendices.

Provision has also been made for the use of the ‘truss analogy’ where non-flexural behaviour of members occurs.

Additional detailing rules and requirements for concrete structures required to be designed for earthquake loads, previously given in various appendices throughout AS 2121, SAA Earthquake Code, (now superseded), are given in Appendix A.

1.4 Technical changes The major technical differences between AS 3600 and the previous Standards lie in the areas of shear in beams and slabs, the design of columns and walls, and the development of stress in reinforcement. The changes that have been made reflect recent advances in materials technology, continuing research into structural behaviour and the ready availability of computer-aided methods of analysis and design. The background to the changes is covered in the Commentary (AS 3600 Supplement 1) on the corresponding clauses together with selected references from the published technical literature.

1.5 Construction and workmanship A considerable number of provisions relating to good construction practices and workmanship, contained in the previous Standards, have been omitted from AS 3600. The omitted material was considered to be either inappropriate because it had contractual implications, or inadequate because it was too specific to cover the likely variety of project situations that may occur and the variety of acceptable alternative practices that could be adopted. The Committee felt that the former should be placed in project specifications where they could be dealt with more effectively and the latter were more appropriate to handbooks and guides on good practice rather than in a structural design standard. The retained provisions have been expressed in terms of required end results rather than prescribing particular methods for achieving those results. Their retention is intended to ensure that the finished concrete structure satisfies the design requirements.

1.6 Editorial changes Advantage was taken of the 1988 revision to rearrange the material contained in the Standard so that it is more readily useable by the practising design engineer. In this regard, the usual sequence in the design process (namely load assessment, analysis, member design and detailing) rather than the checking process, was the guiding criterion.

In line with Standards Australia editorial policy, the words ‘shall’ and ‘may’ are used consistently throughout the Standard to indicate respectively, a mandatory provision and an acceptable or permissible alternative.

2 Amendments

As noted in the opening paragraphs of the Preface, this Edition incorporates Amendment No. 1 of June 1990 and amendments approved in March 1994. Throughout the Standard the amended portions are indicated by vertical bars in the left hand margin. The 1994 Amendments are further distinguished by double bars.
It was also noted that the primary purpose of the amendments was to take account of new, or revised, key reference Standards that had been issued after publication of the first Edition. The principal Standards concerned and the consequent changes to relevant AS 3600 requirements are briefly outlined below.

2.1 AS 1170—Minimum design loads on structures The 1989 revision of AS 1170.1—Dead and live loads and load combinations; AS 1170.2—Wind loads; and AS 1170.3—Snow loads, were covered by the Amendment No.1 changes to Section 3. AS 4055—Wind loads for housing, published in 1992, has now been included in Section 3 under the 1994 Amendments.

The publication of AS 1170.4—Earthquake loads in 1993, which now supersedes AS 2121, is addressed by the 1994 Amendment. Apart from consequent minor changes in Section 3, the major impact of the new part is on Appendix A of AS 3600. This Appendix has been completely redrafted to take account of major differences between AS 1170.4 and AS 2121 in their approach to the zoning and classification of structures for which design for earthquake load is required. Although earthquake forces determined from AS 1170.4 are generally slightly higher than previously required for many areas, the detailing requirements of the new Appendix are generally somewhat less stringent than corresponding previous requirements. The net result is that there is little change to the ‘status quo’ except for taller buildings in regions of the highest seismic risk.

2.2 AS 1379—The specification and manufacture of concrete The 1991 revision of AS 1379 now covers all aspects of the manufacture of concrete, from the specification of ingredient materials, through batching and mixing, to discharge of plastic concrete at the site. It also includes production and project assessment of plastic-state properties and potential hardened-state properties. This obviates the need for detailed requirements for plastic concrete to be specified in AS 3600 and the consequent changes are reflected in the 1994 amendment. These involve the complete redrafting of Clause 19.1 and its dependent subclauses, and Section 20 in its entirety.

It should be noted that construction requirements for handling, placing, protection, curing and stripping have been retained in Section 19, as these all relate to activities which occur after site discharge of the plastic concrete and hence are outside the scope of AS 1379.

In the related area of concrete materials, AS 3582—Supplementary cementitious materials for use with portland cement; AS 3799—Liquid membrane-forming curing compounds for concrete; and AS 3972—Portland and blended cements (supersedes AS 1315 and AS 1317) are also covered by the 1994 amendment.

2.3 AS 3735 Concrete structures for retaining liquids AS 3735—1991 and its companion Standard AS 2783—Use of reinforced concrete for small swimming pools (1992) now provide detailed requirements for this specialized group of concrete structures. The consequent change to Section 17 of AS 3600 is covered by the 1994 amendment.

2.4 Other changes Other technical changes covered by the 1994 Amendment are principally those initiated by comments from users of the Standard and relate to particular clauses in Sections 8, 9 and 10.

Publication of a second edition has provided the opportunity to incorporate recent changes to Standards Australia ‘style’ principles; notably the change from double to single column format. Some changes in Section 1, as noted in the 1994 Amendment, are also related to this. The remaining changes are of a minor editorial or typographical nature.

Appropriate amendments are also being made to the relevant clauses in the Commentary on the Standard (AS 3600 Supplement 1) which will be issued concurrently with this Second Edition of AS 3600.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the appendix to which they apply. A ‘normative’ appendix is an integral part of a Standard, whereas an ‘informative’ appendix is only for information and guidance.
CONTENTS

SECTION 1 SCOPE AND GENERAL
1.1 SCOPE AND APPLICATION ... 10
1.2 REFERENCED DOCUMENTS .. 10
1.3 INTERPRETATIONS AND USE OF ALTERNATIVE MATERIALS OR METHODS ... 11
1.4 DESIGN .. 11
1.5 CONSTRUCTION ... 12
1.6 DEFINITIONS ... 12
1.7 NOTATION .. 14

SECTION 2 DESIGN REQUIREMENTS AND PROCEDURES
2.1 DESIGN REQUIREMENTS .. 22
2.2 DESIGN FOR STABILITY .. 22
2.3 DESIGN FOR STRENGTH ... 22
2.4 DESIGN FOR SERVICEABILITY 22
2.5 DESIGN FOR STRENGTH AND SERVICEABILITY BY LOAD TESTING OF A PROTOTYPE ... 24
2.6 DESIGN FOR DURABILITY ... 24
2.7 DESIGN FOR FIRE RESISTANCE 24
2.8 OTHER DESIGN REQUIREMENTS 24

SECTION 3 LOADS AND LOAD COMBINATIONS FOR STABILITY, STRENGTH AND SERVICEABILITY
3.1 LOADS AND OTHER ACTIONS .. 25
3.2 LOAD COMBINATIONS FOR STABILITY DESIGN 25
3.3 LOAD COMBINATIONS FOR STRENGTH DESIGN 26
3.4 LOAD COMBINATIONS FOR SERVICEABILITY DESIGN 26
3.5 LOAD COMBINATIONS FOR FIRE-RESISTANCE DESIGN 26

SECTION 4 DESIGN FOR DURABILITY
4.1 APPLICATION OF SECTION ... 27
4.2 DESIGN FOR DURABILITY ... 27
4.3 EXPOSURE CLASSIFICATION ... 27
4.4 REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATIONS A1 AND A2 ... 29
4.5 REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATIONS B1, B2 AND C ... 29
4.6 REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATION U ... 30
4.7 ADDITIONAL REQUIREMENTS FOR ABRASION 30
4.8 ADDITIONAL REQUIREMENTS FOR FREEZING AND THAWING .. 30
4.9 RESTRICTIONS ON CHEMICAL CONTENT IN CONCRETE 31
4.10 REQUIREMENTS FOR COVER TO REINFORCING STEEL AND TENDONS ... 31
SECTION 5 DESIGN FOR FIRE RESISTANCE

5.1 SCOPE OF SECTION ... 34
5.2 DEFINITIONS ... 34
5.3 DESIGN REQUIREMENTS ... 34
5.4 FIRE-RESISTANCE PERIODS FOR BEAMS 35
5.5 FIRE-RESISTANCE PERIODS FOR SLABS 37
5.6 FIRE-RESISTANCE PERIODS FOR COLUMNS 38
5.7 FIRE-RESISTANCE PERIODS FOR WALLS 39
5.8 FIRE-RESISTANCE PERIODS FROM FIRE TESTS 41
5.9 FIRE-RESISTANCE PERIODS BY CALCULATION 42
5.10 INCREASE OF FIRE-RESISTANCE PERIODS BY USE OF INSULATING MATERIALS ... 42

SECTION 6 DESIGN PROPERTIES OF MATERIALS

6.1 PROPERTIES OF CONCRETE 45
6.2 PROPERTIES OF REINFORCEMENT 49
6.3 PROPERTIES OF TENDONS .. 50
6.4 LOSS OF PRESTRESS IN TENDONS 52

SECTION 7 METHODS OF STRUCTURAL ANALYSIS

7.1 GENERAL ... 55
7.2 SIMPLIFIED METHOD FOR REINFORCED CONTINUOUS BEAMS AND ONE-WAY SLABS ... 57
7.3 SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLABS SUPPORTED ON FOUR SIDES .. 58
7.4 SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLAB SYSTEMS HAVING MULTIPLE SPANS ... 59
7.5 IDEALIZED FRAME METHOD FOR STRUCTURES INCORPORATING TWO-WAY SLAB SYSTEMS ... 62
7.6 LINEAR ELASTIC ANALYSIS 63
7.7 ELASTIC ANALYSIS OF FRAMES INCORPORATING SECONDARY BENDING MOMENTS ... 65
7.8 RIGOROUS STRUCTURAL ANALYSIS 66
7.9 PLASTIC METHODS OF ANALYSIS FOR SLABS 66
7.10 PLASTIC METHODS OF ANALYSIS OF FRAMES 66

SECTION 8 DESIGN OF BEAMS FOR STRENGTH AND SERVICEABILITY

8.1 STRENGTH OF BEAMS IN BENDING 67
8.2 STRENGTH OF BEAMS IN SHEAR 71
8.3 STRENGTH OF BEAMS IN TORSION 74
8.4 LONGITUDINAL SHEAR IN BEAMS 76
8.5 DEFLECTION OF BEAMS .. 78
8.6 CRACK CONTROL OF BEAMS .. 79
8.7 VIBRATION OF BEAMS .. 80
8.8 T-BEAMS AND L-BEAMS .. 80
8.9 SLENDERNESS LIMITS FOR BEAMS 80
SECTION 9 DESIGN OF SLABS FOR STRENGTH AND SERVICEABILITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>STRENGTH OF SLABS IN BENDING</td>
<td>82</td>
</tr>
<tr>
<td>9.2</td>
<td>STRENGTH OF SLABS IN SHEAR</td>
<td>85</td>
</tr>
<tr>
<td>9.3</td>
<td>DEFLECTION OF SLABS</td>
<td>88</td>
</tr>
<tr>
<td>9.4</td>
<td>CRACK CONTROL OF SLABS</td>
<td>90</td>
</tr>
<tr>
<td>9.5</td>
<td>VIBRATION OF SLABS</td>
<td>91</td>
</tr>
<tr>
<td>9.6</td>
<td>MOMENT RESISTING WIDTH FOR ONE-WAY SLABS SUPPORTING CONCENTRATED LOADS</td>
<td>92</td>
</tr>
<tr>
<td>9.7</td>
<td>LONGITUDINAL SHEAR IN COMPOSITE SLABS</td>
<td>92</td>
</tr>
</tbody>
</table>

SECTION 10 DESIGN OF COLUMNS FOR STRENGTH AND SERVICEABILITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>GENERAL</td>
<td>93</td>
</tr>
<tr>
<td>10.2</td>
<td>DESIGN PROCEDURES</td>
<td>93</td>
</tr>
<tr>
<td>10.3</td>
<td>DESIGN OF SHORT COLUMNS</td>
<td>93</td>
</tr>
<tr>
<td>10.4</td>
<td>DESIGN OF SLENDER COLUMNS</td>
<td>94</td>
</tr>
<tr>
<td>10.5</td>
<td>SLENDERNESS</td>
<td>95</td>
</tr>
<tr>
<td>10.6</td>
<td>STRENGTH OF COLUMNS IN COMBINED BENDING AND COMPRESSION</td>
<td>98</td>
</tr>
<tr>
<td>10.7</td>
<td>REINFORCEMENT REQUIREMENTS FOR COLUMNS</td>
<td>100</td>
</tr>
<tr>
<td>10.8</td>
<td>TRANSMISSION OF AXIAL FORCE THROUGH FLOOR SYSTEMS</td>
<td>102</td>
</tr>
</tbody>
</table>

SECTION 11 DESIGN OF WALLS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>APPLICATION</td>
<td>103</td>
</tr>
<tr>
<td>11.2</td>
<td>DESIGN PROCEDURES</td>
<td>103</td>
</tr>
<tr>
<td>11.3</td>
<td>BRACING OF WALLS</td>
<td>103</td>
</tr>
<tr>
<td>11.4</td>
<td>SIMPLIFIED DESIGN METHOD FOR BRACED WALLS SUBJECT TO VERTICAL FORCES ONLY</td>
<td>104</td>
</tr>
<tr>
<td>11.5</td>
<td>DESIGN OF WALLS FOR IN-PLANE HORIZONTAL FORCES</td>
<td>104</td>
</tr>
<tr>
<td>11.6</td>
<td>REINFORCEMENT REQUIREMENTS FOR WALLS</td>
<td>105</td>
</tr>
</tbody>
</table>

SECTION 12 DESIGN OF NON-FLEXURAL MEMBERS, END ZONES AND BEARING SURFACES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>DESIGN OF NON-FLEXURAL MEMBERS</td>
<td>107</td>
</tr>
<tr>
<td>12.2</td>
<td>ANCHORAGE ZONES FOR PRESTRESSING ANCHORAGES</td>
<td>109</td>
</tr>
<tr>
<td>12.3</td>
<td>BEARING SURFACES</td>
<td>110</td>
</tr>
</tbody>
</table>

SECTION 13 STRESS DEVELOPMENT AND SPLICING OF REINFORCEMENT AND TENDONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>STRESS DEVELOPMENT IN REINFORCEMENT</td>
<td>111</td>
</tr>
<tr>
<td>13.2</td>
<td>SPLICING OF REINFORCEMENT</td>
<td>113</td>
</tr>
<tr>
<td>13.3</td>
<td>STRESS DEVELOPMENT IN TENDONS</td>
<td>114</td>
</tr>
<tr>
<td>13.4</td>
<td>COUPLING OF TENDONS</td>
<td>115</td>
</tr>
</tbody>
</table>

SECTION 14 JOINTS, EMBEDDED ITEMS, FIXINGS AND CONNECTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>DESIGN OF JOINTS</td>
<td>116</td>
</tr>
<tr>
<td>14.2</td>
<td>EMBEDDED ITEMS AND HOLES IN CONCRETE</td>
<td>116</td>
</tr>
<tr>
<td>14.3</td>
<td>REQUIREMENTS FOR FIXINGS</td>
<td>116</td>
</tr>
<tr>
<td>14.4</td>
<td>CONNECTIONS</td>
<td>117</td>
</tr>
</tbody>
</table>
SECTION 15 PLAIN CONCRETE MEMBERS
15.1 APPLICATION ... 118
15.2 DESIGN .. 118
15.3 STRENGTH IN BENDING 118
15.4 STRENGTH IN SHEAR 118
15.5 STRENGTH IN AXIAL COMPRESSION 118
15.6 STRENGTH IN COMBINED BENDING AND COMPRESSION ... 119

SECTION 16 CONCRETE PAVEMENTS, FLOORS AND RESIDENTIAL FOOTINGS
16.1 APPLICATION ... 120
16.2 ADDITIONAL DESIGN CONSIDERATIONS FOR PAVEMENTS AND INDUSTRIAL AND COMMERCIAL FLOORS 120
16.3 RESIDENTIAL FLOORS AND FOOTINGS 120

SECTION 17 LIQUID RETAINING STRUCTURES
DESIGN REQUIREMENTS 120

SECTION 18 MARINE STRUCTURES
18.1 APPLICATION ... 121
18.2 ADDITIONAL LOADS AND ACTIONS 121
18.3 ADDITIONAL DURABILITY AND DESIGN REQUIREMENTS 121

SECTION 19 MATERIAL AND CONSTRUCTION REQUIREMENTS
19.1 MATERIAL AND CONSTRUCTION REQUIREMENTS FOR CONCRETE AND GROUT 122
19.2 MATERIAL AND CONSTRUCTION REQUIREMENTS FOR REINFORCING STEEL 124
19.3 MATERIAL AND CONSTRUCTION REQUIREMENTS FOR PRESTRESSING DUCTS, ANCHORAGES AND TENDONS 126
19.4 CONSTRUCTION REQUIREMENTS FOR JOINTS AND EMBEDDED ITEMS ... 128
19.5 TOLERANCES FOR STRUCTURES AND MEMBERS 128
19.6 FORMWORK .. 129

SECTION 20 TESTING AND ASSESSMENT FOR COMPLIANCE OF CONCRETE SPECIFIED BY COMPRESSIVE STRENGTH
20.1 GENERAL .. 132
20.2 PRODUCTION ASSESSMENT AND CONTROL 132
20.3 PROJECT ASSESSMENT 132
20.4 PRINCIPLES FOR ASSESSMENT OF CONCRETE SPECIFIED BY STRENGTH ... 132
20.5 ALTERNATIVE ASSESSMENT METHOD 132
20.6 DEEMED TO COMPLY PROVISIONS 132

SECTION 21 TESTING OF MEMBERS AND STRUCTURES
21.1 PROOF TESTING OF BEAMS AND SLABS 133
21.2 PROTOTYPE TESTING 133
21.3 QUALITY CONTROL TESTING OF MANUFACTURED UNITS ... 134
21.4 TESTING FOR STRENGTH OF HARDENED CONCRETE IN PLACE ... 134
APPENDICES

A ADDITIONAL REQUIREMENTS FOR STRUCTURES SUBJECT TO EARTHQUAKE ACTIONS ... 136
B REFERENCED DOCUMENTS ... 144

INDEX ... 147
1.1 SCOPE AND APPLICATION

1.1.1 Scope This Standard sets out minimum requirements for the design and construction of concrete structures and members which contain reinforcing steel, or tendons, or both. It also sets out minimum requirements for plain concrete members.

NOTE: This Standard will be referenced in the Building Code of Australia by way of BCA Amendment 7 intended for publication in November 1994, thereby superseding the previous edition, AS 3600 — 1988, which will be withdrawn 12 months from the date of publication of this edition.

Users are advised that when BCA Amendment 7 is issued, it will not necessarily be gazetted in each State/Territory at the time of printing.

1.1.2 Application This Standard is intended to apply to structures made of concrete—

(a) with a characteristic compressive strength at 28 days, \(f'_{c} \), in the range of 20 MPa to 50 MPa; and

(b) of saturated, surface-dry density in the range of 1800 kg/m\(^3\) to 2800 kg/m\(^3\).

This Standard may be applied to concrete bridges. However, the design Standards of the relevant bridge authority, namely the Austroads Bridge Design Code for road bridges and the ANZRC Railway Bridge Design Manual for railway bridges, shall be used where applicable.

The general principles of concrete design and construction embodied in this Standard may be applied to concrete other than that specified above, or to concrete structures or members not specifically mentioned herein.

This Standard is not intended to apply to the design of mass concrete structures. It is also not intended that the requirements of this Standard should take precedence over those of other Australian Standards.

NOTES:
1. It is intended that the design of a structure or member to which this Standard applies, be carried out by, or under the supervision of, an engineer as defined in Clause 1.6.2.
2. Consideration is being given to extending the application of the Standard to structures in which the characteristic compressive strength of concrete (\(f'_{c} \)) is greater than 50 MPa. However, before such an extension could be incorporated, current research data indicates that some requirements of the Standard would need to be more stringent than those presently given and others appropriately modified.

1.2 REFERENCED DOCUMENTS The Standards and other documents referred to in this Standard are listed in Appendix B.