Australian Standard®

ACOUSTICS—METHODS FOR THE MEASUREMENT OF ROAD TRAFFIC NOISE
This Australian standard was prepared by Committee AK/5, Community Noise. It was approved on behalf of the Council of the Standards Association of Australia on 7 February 1984 and published on 6 April 1984.

The following interests are represented on Committee AK/5:

- Australian Acoustical Society
- Australian and New Zealand Pulp and Paper Industry Technical Association
- Australian Institute of Health Surveyors
- Australian Institute of Petroleum Limited
- Australian Road Research Board
- Bureau of Steel Manufacturers of Australia
- Confederation of Australian Industry
- Council of the City of Sydney
- CSIRO, Division of Building Research
- CSIRO, Division of Mathematics and Statistics
- Department of Defence, Commonwealth
- Department of Environment and Planning, S.A.
- Department of Public Health, N.S.W.
- Department of Public Works, W.A.
- Electricity Supply Association of Australia
- Environment Protection Authority, Vic
- Experimental Building Station
- Metal Trades Industry Association of Australia
- National Acoustic Laboratories
- National Association of Australian State Road Authorities
- Royal Australian Institute of Architects
- Royal Australian Planning Institute
- Society of Automotive Engineers—Australasia
- State Pollution Control Commission, N.S.W.
- University of Adelaide
- Victoria Police

Review of Australian Standards. To keep abreast of progress in industry, Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary. It is important therefore that Standards users ensure that they are in possession of the latest edition, and any amendments thereto.

Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications; this information is supplemented each month by the magazine 'The Australian Standard', which subscribing members receive, and which gives details of new publications, new editions and amendments, and of withdrawn Standards.

Suggestions for improvements to Australian Standards, addressed to the head office of Standards Australia, are welcomed. Notification of any inaccuracy or ambiguity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.

This Standard was issued in draft form for comment as DR 82108.
PREFACE

This standard was prepared by the Association’s Committee on Community Noise. As road traffic noise is the chief community noise source at the majority of urban sites, it is necessary to standardize methods for measurement of this noise and for the collection of associated data.

At the time of preparation of this standard, a number of descriptors of traffic noise are in use throughout the world. One of these is the descriptor L_{10} (18 hours) which is used in the United Kingdom and has been widely used in Australia. For details of a measurement and prediction method, see Calculation of Road Traffic Noise, Department of Environment, Welsh Office, HMSO, London, July, 1975. The International Organization for Standardization Technical Committee (ISO/TC 43), however, recommends the use of the descriptor $L_{Aeq,T}$. Both the above descriptors are used in this draft standard. It is recommended that further consideration be given to the use in Australia of the descriptor $L_{Aeq,T}$ as additional experience is gained. Thus, wherever possible it is recommended that $L_{Aeq,T}$ be measured together with any other traffic noise descriptor.

Prior knowledge of acoustics is required in order to use this standard.

CONTENTS

METHOD

1 Scope ... 3
2 Referenced Documents ... 3
3 Application ... 3
4 Definitions ... 3
5 Instrumentation ... 5
6 Procedures for Measurement ... 5
7 Reporting of Results ... 7

APPENDICES

A Determination of Road Surface Macrotexture Using the Sandpatch Technique ... 9
B Results to be Recorded if Insertion Required in the NAASRA Traffic Noise Data Base ... 10

© Copyright – STANDARDS AUSTRALIA

Users of Standards are reminded that copyright subsists in all Standards Australia publications and software. Except where the Copyright Act allows and except where provided for below no publications or software produced by Standards Australia may be reproduced, stored in a retrieval system in any form or transmitted by any means without prior permission in writing from Standards Australia. Permission may be conditional on an appropriate royalty payment. Requests for permission and information on commercial software royalties should be directed to the head office of Standards Australia.

Standards Australia will permit up to 10 percent of the technical content pages of a Standard to be copied for use exclusively in-house by purchasers of the Standard without payment of a royalty or advice to Standards Australia.

Standards Australia will also permit the inclusion of its copyright material in computer software programs for no royalty payment provided such programs are used exclusively in-house by the creators of the programs.

Care should be taken to ensure that material used is from the current edition of the Standard and that it is updated whenever the Standard is amended or revised. The number and date of the Standard should therefore be clearly identified.

The use of material in print form or in computer software programs to be used commercially, with or without payment, or in commercial contracts is subject to the payment of a royalty. This policy may be varied by Standards Australia at any time.
1 SCOPE. This standard sets out methods for the measurement of the noise emitted by road traffic. The sound pressure levels are expressed in decibels, generally using the A-weighting network.

This standard describes minimum instrument requirements, preferred scales of measurement, and the location of measurement sites and non-acoustic data which are to be recorded in conjunction with the acoustic measurements.

NOTE: While the A-weighting network is usually sufficient for traffic noise studies, it may also be necessary to use frequency analysis or other weighting networks, for specific situations. See AS 241 for details of octave, half octave and one-third octave band filters used for analysis of sound and AS 1259 for details of other networks.

Some of the methods described and the data to be acquired in this standard are only necessary if the measurements are for research purposes.

This standard does not include methods of prediction of road traffic noise levels nor of assessment of the effect of traffic noise on people.

2 REFERENCED DOCUMENTS. The following documents are referred to in this standard:

AS 1259 Sound Level Meters
AS 1633 Glossary of Acoustic Terms
AS 2659 Guide for the Use of Sound Measurement Equipment Part 3—Equipment for Integration of Sound Signals
AS 2880 Tape Recording Equipment for Use in Acoustical Measurement in Systems
SAA MP44 Guide for the Use of Sound Measuring Equipment Part 1—Portable Sound Level Meters
AS Z41 Octave, Half Octave and One-third Octave Band Pass Filters Intended for the Analysis of Sound and Vibrations

3 APPLICATION. This standard applies to the measurement of sound emitted by road traffic in most situations, when received both inside and outside buildings and for both urban and rural situations.

4 DEFINITIONS. For the purpose of this standard, the following definitions apply:

NOTE: For definitions of other acoustic terms, see AS 1633.

4.1 Equivalent continuous A-weighted sound pressure level, $L_{Aeq,T}$ (in decibels)—is the value of the sound pressure level of a continuous steady sound that, within a specified time interval, T, has the same mean square sound pressure as a sound whose level varies with time, and is defined as—

$$L_{Aeq,T} = 10 \log_{10} \left[\frac{1}{t} \int_{t_1}^{t_2} \frac{p_A^2(t)}{P_0^2} dt \right] \text{dB(A)}$$

where

$L_{Aeq,T}$ = equivalent continuous A-weighted sound pressure level, determined over a time interval T starting at t_1 and ending at t_2, in decibels (A)

p_A = reference sound pressure

$= 20 \mu Pa$

$P_{A(0)}$ = instantaneous A-weighted sound pressure of the sound signal.

Where discrete sampling methods are used, the value of $L_{Aeq,T}$ may be approximated as follows:

$$L_{Aeq,T} \approx 10 \log_{10} \left[\frac{1}{100} 10^{\frac{0.1L_n}{10}} \right]$$

where

L_n = sound level corresponding to the class-midpoint of the class i, in decibels (A)

f_i = time interval for which the sound level is within the limits of class i, in percentage of relevant time periods

Σ = the summation of all the components for the range of classes of sound level involved.

NOTE: Commonly the class interval is 5 dB.

4.2 Percentile level $L_{AN,T}$ (in decibels)—the A-weighted sound pressure level exceeded for N percent of the total time period of interest T in hours, e.g. $L_{AN,1h}$, $L_{AN,T}$ may be determined by sampling over shorter periods, t, where L_N is the sound pressure level exceeded for N percent of the time ‘t’.

NOTES:
1. Commonly used values of N are 1, 5, 10, 50, 90, 95 and 99.
2. Commonly used values of T are 1 h and 24 h.
3. Where one representative sample only is taken in time period T, $L_{AN,T} = L_{AN}$, where more than one sample is taken, the separate samples must be combined into one composite sample to determine $L_{AN,T}$.

4.3 Derived descriptor L_{AI0} (18 hour)—the arithmetic average of the 18 individual $L_{AI0,1.5}$ values between the hours of 6:00 a.m. and midnight.

NOTE: This derived descriptor is found in the ‘Calculation of Road Traffic Noise, Department of Environment, Welsh Office, HMSO, London, July 1975’.

4.4 Vehicle type—the classification of the vehicles based on shapes given in Fig. 1.

NOTE: The classification of vehicles has been based on potential noise output. For ease of field identification the body shapes and the number of tyres are used in Fig. 1. For additional guidance the typical tare mass ranges are also given for the various body shape/number of tyre classifications.

* In course of preparation
This is a free preview. Purchase the entire publication at the link below:

AS 2702 : 1984 : EN : COMBINED PDF

Looking for additional Standards? Visit SAI Global Infostore
Learn about LexConnect, All Jurisdictions, Standards referenced in Australian legislation

Need to speak with a Customer Service Representative - Contact Us