Australian Standard®

Measurement of fluid flow in closed conduits

Part 1.1: Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Conduits with diameters from 50 mm to 1200 mm

This Australian Standard was prepared by Committee CE/24, Measurement of Water Flow in Open Channels and Closed Conduits. It was approved on behalf of the Council of Standards Australia on 3 August 1993 and published on 20 December 1993.

The following interests are represented on Committee CE/24:

- Association of Consulting Engineers of Australia
- Department of Water Resources, New South Wales
- Engineering and Water Supply Department, South Australia
- Forestry Commission of New South Wales
- Institute of Instrumentation and Control, Australia
- Melbourne Water
- Monash University
- Snowy Mountains Engineering Corporation
- University of New South Wales
- University of Queensland
- Water Authority of Western Australia
- Water Board, Sydney—Illawarra—Blue Mountains
- Water Resources Commission, Queensland

Review of Australian Standards. To keep abreast of progress in industry, Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary. It is important therefore that Standards users ensure that they are in possession of the latest edition, and any amendments thereto.

Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications; this information is supplemented each month by the magazine 'The Australian Standard', which subscribing members receive, and which gives details of new publications, new editions and amendments, and of withdrawn Standards.

Suggestions for improvements to Australian Standards, addressed to the head office of Standards Australia, are welcomed. Notification of any inaccuracy or ambiguity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.
Australian Standard®

Measurement of fluid flow in closed conduits

Part 1.1: Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Conduits with diameters from 50 mm to 1200 mm

First published as AS 2360.1.1—1993.
This Standard was prepared by the Standards Australia Committee on Measurement of Water Flow in Open Channels and Closed Conduits. It is identical with and has been reproduced from ISO 5167-1:1991, Measurement of fluid flow by means of pressure differential devices, Part 1: Orifice plates, nozzles and Venturi tubes inserted in circular cross-section conduits running full.

Under arrangements made between Standards Australia and the international Standards bodies, ISO and IEC, as well as certain other Standards organizations, users of this Australian Standard are advised of the following:

(a) Copyright is vested in Standards Australia.

(b) The number of this Standard is not reproduced on each page; its identity is shown only on the cover and title pages.

(c) There may be occasional dual language sections, but English is always one of the languages reproduced.

(d) Where any cross-references to page numbers appear within the text, these relate to page numbering in the international Standard and are to be disregarded.

This Standard is one of a series, to be published progressively, which deals with methods of measurement of fluid flow in closed conduits. The following Parts were published concurrently with this Part:

AS 2360 Measurement of fluid flow in closed circuits
2360.0 Part 0: Vocabulary and symbols
2360.1.1 Part 1.1: Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Conduits with diameters from 50 mm to 1200 mm (this Standard)
2360.1.2 Part 1.2: Pressure differential methods—Measurement using orifice plates or nozzles—Conduits with diameters less than 50 mm
2360.1.3 Part 1.3: Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Guide to the use of methods specified in Parts 1.1 and 1.2
2360.1.4 Part 1.4: Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Guide to the effect of departure from the conditions specified in Part 1.1
2360.1.5 Part 1.5: Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Pulsating flow, in particular sinusoidal or square wave intermittent periodic-type fluctuations
2360.6.1 Part 6.1: Volumetric methods—By mass
2360.6.2 Part 6.2: Volumetric methods—By volume
2360.7.1 Part 7.1: Assessment of uncertainty in the calibration and use of flow measurement devices—Linear calibration relationships
2360.7.2 Part 7.2: Assessment of uncertainty in the calibration and use of flow measurement devices—Non-linear calibration relationships

At the date of publication of this Part the following Parts, with the numbers of the parent international Standards in parenthesis, had not been published:

Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Connections for pressure signal transmissions between primary and secondary elements (ISO 2186)

Pitot static tube methods—Measurement of velocity at a point of the cross-section of a conduit (ISO 7145)

Pitot static tube methods—Measurement using Pitot-static tubes (ISO 3966)

Pitot static tube methods—Measurement in swirling or asymmetric flow conditions using ISO 3966 or ISO 3354 (ISO 7194)
Current meters method—Measurement of clean water in full conduits and under regular flow conditions using current meters (ISO 3354)

Non-radioactive tracer methods—Review of alternative methods (ISO 2975.1)

Non-radioactive tracer methods—Measurement using constant rate injection (ISO 2975.2)

Non-radioactive tracer methods—Measurement using transit time (ISO 2975.6)

Weighing methods—Verification of static type (ISO 9368.1)

Weighing methods—Verification of dynamic type (ISO 9368.2, not published)

When published, the details for the above unpublished Australian Standards will be listed in the Catalogue of Australian Standards and Other Products.

For the purposes of this Australian Standard, the ISO text should be modified as follows:

(i) Wherever the words ‘International Standard’ appear, referring to this Standard, they should be read as ‘Australian Standard’.

(ii) Substitute a full stop (.) for a comma (,) as a decimal marker.

(iii) The references to other publications should be replaced by references to Australian Standards as follows:

<table>
<thead>
<tr>
<th>Reference to International Standard</th>
<th>Australian Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 468 Surface roughness—Parameters, their values and general rules for specifying requirements</td>
<td>AS 2536 Surface texture</td>
</tr>
<tr>
<td>ISO 4006 Measurement of fluid flow in closed conduits—Vocabulary and symbols</td>
<td>2360 Measurement of fluid flow in closed conduits</td>
</tr>
<tr>
<td>ISO 4006 Measurement of fluid flow in closed conduits—Vocabulary and symbols</td>
<td>2360.0 Part 0: Vocabulary and symbols</td>
</tr>
<tr>
<td>ISO 5168 Measurement of fluid flow—Evaluation of uncertainties</td>
<td>3778.2.4 Part 2.4: General—Estimation of uncertainty of a flow-rate measurement</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope</td>
</tr>
<tr>
<td>2</td>
<td>Normative references</td>
</tr>
<tr>
<td>2</td>
<td>Definitions</td>
</tr>
<tr>
<td>5</td>
<td>Symbols and subscripts</td>
</tr>
<tr>
<td>4.1</td>
<td>Symbols</td>
</tr>
<tr>
<td>4.2</td>
<td>Subscripts</td>
</tr>
<tr>
<td>6</td>
<td>Principle of the method of measurement and computation</td>
</tr>
<tr>
<td>5.1</td>
<td>Principle of the method of measurement</td>
</tr>
<tr>
<td>5.2</td>
<td>Method of determination of the diameter ratio of the selected standard primary device</td>
</tr>
<tr>
<td>5.3</td>
<td>Computation of rate of flow</td>
</tr>
<tr>
<td>5.4</td>
<td>Determination of density</td>
</tr>
<tr>
<td>7</td>
<td>General requirements for the measurements</td>
</tr>
<tr>
<td>6.1</td>
<td>Primary device</td>
</tr>
<tr>
<td>6.2</td>
<td>Nature of the fluid</td>
</tr>
<tr>
<td>6.3</td>
<td>Flow conditions</td>
</tr>
<tr>
<td>8</td>
<td>Installation requirements</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
</tr>
<tr>
<td>7.2</td>
<td>Minimum upstream and downstream straight lengths required for installation between various fittings and the primary device</td>
</tr>
<tr>
<td>7.3</td>
<td>Flow conditioners</td>
</tr>
<tr>
<td>7.4</td>
<td>General requirements for flow conditions at the primary device</td>
</tr>
<tr>
<td>7.5</td>
<td>Additional specific installation requirements for orifice plates, nozzles and Venturi nozzles</td>
</tr>
<tr>
<td>7.6</td>
<td>Additional specific installation requirements for classical Venturi tubes</td>
</tr>
<tr>
<td>16</td>
<td>Orifice plates</td>
</tr>
</tbody>
</table>
8.1 Description .. 16
8.2 Pressure tappings .. 18
8.3 Coefficients and corresponding uncertainties of orifice plates 21
8.4 Pressure loss, Δϖ .. 23
9 Nozzles .. 23
 9.1 ISA 1932 nozzle .. 23
 9.2 Long radius nozzles ... 26
10 Venturi tubes ... 28
 10.1 Classical Venturi tubes .. 28
 10.2 Venturi nozzle ... 34
11 Uncertainties on the measurement of flow-rate 37
 11.1 Definition of uncertainty ... 37
 11.2 Practical computation of the uncertainty 37

Annexes
A Tables of discharge coefficients and expansibility [expansion] factors .. 39
B Classical Venturi tubes used outside the scope of this part of ISO 5167 .. 55
C Pressure loss in a classical Venturi tube 57
D Iterative computations ... 59
E Examples of values of the pipe wall uniform equivalent roughness, k ... 61
Measurement of fluid flow in closed conduits

Part 1.1:
Pressure differential methods—Measurement using orifice plates, nozzles or Venturi tubes—Conduits with diameters from 50 mm to 1200 mm

1 Scope

This part of ISO 5167 specifies the geometry and method of use (installation and operating conditions) of orifice plates, nozzles and Venturi tubes when they are inserted in a conduit running full to determine the flow-rate of the fluid flowing in the conduit. It also gives necessary information for calculating the flow-rate and its associated uncertainty.

It applies only to pressure differential devices in which the flow remains subsonic throughout the measuring section and is steady or varies only slowly with time and where the fluid can be considered as single-phase. In addition, each of these devices can only be used within specified limits of pipe size and Reynolds number. Thus this part of ISO 5167 cannot be used for pipe sizes less than 50 mm or more than 1 200 mm or for pipe Reynolds numbers below 3 150.

It deals with devices for which direct calibration experiments have been made, sufficient in number, spread and quality to enable coherent systems of application to be based on their results and coefficients to be given with certain predictable limits of uncertainty.

The devices introduced into the pipe are called “primary devices”. The term primary device also includes the pressure tappings. All other instruments or devices required for the measurement are known as “secondary devices”. This part of ISO 5167 covers primary devices; secondary devices1) will be mentioned only occasionally.
