Australian/New Zealand Standard™

Low-voltage switchgear and controlgear assemblies

Part 1: General rules
(IEC 61439-1, Ed. 2.0 (2011), MOD)
AS/NZS 61439.1:2016

This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee EL-006, Industrial Switchgear and Controlgear. It was approved on behalf of the Council of Standards Australia on 16 March 2016 and by the New Zealand Standards Approval Board on 4 May 2016. This Standard was published on 24 May 2016.

The following are represented on Committee EL-006:

Association of Accredited Certification Bodies
Australian Industry Group
Bureau of Steel Manufacturers of Australia
Business New Zealand
Electrical Contractors Association of New Zealand
Engineers Australia
National Electrical and Communications Association
National Electrical Switchboard Manufacturers Association
Rail Industry Safety and Standards Board

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com or Standards New Zealand web site at www.standards.govt.nz and looking up the relevant Standard in the online catalogue.

For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of Standards Australia or the New Zealand Standards Executive at the address shown on the back cover.

This Standard was issued in draft form for comment as DR AS/NZS 61439.1:2014.
PREFACE

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee EL-006, Industrial Switchgear and Controlgear, to supersede AS/NZS 3439.1:2012 five years from the date of publication.

The AS/NZS 61439 series will supersede the AS/NZS 3439 series five years from the date of publication. During this period, low-voltage switchgear and controlgear assemblies may comply with either series. After five years it is anticipated that the AS/NZS 3439 series will be withdrawn.

The objective of this Standard is to harmonize as far as practicable all rules and requirements of a general nature applicable to low-voltage switchgear and controlgear assemblies (ASSEMBLIES), in order to obtain uniformity of requirements and verification for ASSEMBLIES, and avoid the need for verification to other Standards.

This Standard is an adoption with national modifications. It has been reproduced from IEC 61439-1, Ed. 2.0 (2011), Low-voltage switchgear and controlgear assemblies, Part 1: General rules and has been varied as indicated to take account of Australian/New Zealand conditions.

Where tests on the ASSEMBLY have been conducted in accordance with the IEC 60439, IEC 61439 or AS/NZS 3439 series and the test results fulfil the requirements of the relevant part of AS/NZS 61439, the verification of these requirements need not be repeated (see Clause 10.1).

Variations made to IEC 61439-1:2011 form the Australian/New Zealand variations for the purposes of the CB scheme for recognition of testing to standards for safety of electrical equipment. These variations are listed in Appendix ZA for easy reference.

NOTE: This Appendix has been designated ZA instead of the usual ZZ so that other Appendices have the same designations as those in AS/NZS 3439.1:2002.

This Standard is structured as follows:

(a) Preface.
(b) IEC 61439-1, Ed. 2.0 (2011) (unedited from the contents page to the final clause of the source document).
(c) Appendix ZA—Australian/New Zealand variations to the source document.
(d) Appendices ZB to ZE contain additional requirements and information referred to from Appendix ZA.

This second edition includes the following significant technical changes with respect to the last edition of IEC 61439-1:

(i) Revision of service conditions in Clause 7.
(ii) Numerous changes regarding verification methods in Clause 10.
(iii) Modification of routine verification in respect of clearances and creepage distances (see Clause 11.3).
(iv) Adaption of the tables in Annex C and Annex D to the revised requirements and Verification methods.
(v) Revision of the EMC requirements in Annex J.
(vi) Shifting of tables from Annex H to new Annex N.
(vii) New Annex O with guidance on temperature rise verification.
(ix) Update of normative references.
(x) General editorial review.
NOTE: It should be noted that when a dated reference to IEC 60439-1 is made in another Part of the IEC 60439 series of assembly standards not yet transferred into the new IEC 61439 series, the superseded IEC 60439-1 still applies (see also the Introduction below).

In this Standard, terms written in small capitals are defined in Clause 3.

The ‘in some countries’ notes regarding differing national practices are contained in the following subclauses:

(A) 5.4.
(B) 8.2.2.
(C) 8.3.2.
(D) 8.3.3.
(E) 8.4.2.3.
(F) 8.5.5.
(G) 8.6.6.
(H) 8.8.
(I) 9.2.
(J) 10.11.5.4.
(K) 10.11.5.6.1.
(L) Annex L.
(M) Annex M.

As this Standard is reproduced from an International Standard, the following applies:

(1) In the source text ‘this part of IEC 61439’ should read ‘this Australian/New Zealand Standard’.

(2) A full point substitutes for a comma when referring to a decimal marker.

References to International Standards should be replaced by references to Australian or Australian/New Zealand Standards, as follows:

<table>
<thead>
<tr>
<th>Reference to International Standard</th>
<th>Australian/New Zealand Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60529 Degrees of protection provided by enclosures (IP Code)</td>
<td>AS/NZS 60529 Degrees of protection provided by enclosures (IP Code)</td>
</tr>
<tr>
<td>IEC 60865 Short-circuit currents—Calculation of effects</td>
<td>AS/NZS 3865 Calculation of the effects of short-circuit currents</td>
</tr>
<tr>
<td>IEC 60865-1 Part 1: Definitions and calculation methods</td>
<td></td>
</tr>
<tr>
<td>IEC 61180 High-voltage test techniques for low-voltage equipment</td>
<td>AS/NZS 4362 High-voltage test techniques for low-voltage equipment</td>
</tr>
<tr>
<td>IEC 61180 (all parts)</td>
<td>4362.1 Part 1: Definitions, test and procedure requirements</td>
</tr>
<tr>
<td>IEC 61180 (all parts)</td>
<td>4362.2 Part 2: Test equipment</td>
</tr>
<tr>
<td>IEC 60364 Low-voltage electrical installations</td>
<td>AS/NZS 3000 Electrical installations (known as the Australian/New Zealand Wiring Rules)</td>
</tr>
<tr>
<td>IEC 60439 Low-voltage switchgear and controlgear assemblies (series)</td>
<td>AS/NZS 3439 Low-voltage switchgear and controlgear assemblies (series)</td>
</tr>
<tr>
<td>AS/NZS</td>
<td>IEC</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>60695</td>
<td>Fire hazard testing</td>
</tr>
<tr>
<td>60695.2-10</td>
<td>Part 2-10: Glowing/hot-wire based test methods—Glow-wire apparatus and common test procedure</td>
</tr>
<tr>
<td>60695-11-5</td>
<td>Part 11-5: Test flames—Needle-flame test method—Apparatus, confirmatory test arrangement and guidance</td>
</tr>
<tr>
<td>61000</td>
<td>Electromagnetic compatibility (EMC)</td>
</tr>
<tr>
<td>61000-4-2</td>
<td>Part 4-2: Testing and measurement techniques—Electrostatic discharge immunity test</td>
</tr>
<tr>
<td>61000-4-3</td>
<td>Part 4-3: Testing and measurement techniques—Radiated, radio frequency, electromagnetic field immunity test</td>
</tr>
<tr>
<td>61000-4-11</td>
<td>Part 4-11: Testing and measurement techniques—Voltage dips, short interruptions and voltage variations immunity tests</td>
</tr>
<tr>
<td>61000-4-13</td>
<td>Part 4-13: Testing and measurement techniques—Harmonics and interharmonics including mains signalling at a.c. power port, low-frequency immunity tests</td>
</tr>
</tbody>
</table>

Only normative references that have been adopted as Australian or Australian/New Zealand Standard have been listed.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the annexes or appendices to which they apply. A ‘normative’ annex or appendix is an integral part of a Standard, whereas an ‘informative’ annex or appendix is only for information and guidance.
CONTENTS

1 Scope .. 12
2 Normative references ... 12
3 Terms and definitions ... 15
 3.1 General terms .. 15
 3.2 Constructional units of ASSEMBLIES .. 17
 3.3 External design of ASSEMBLIES .. 18
 3.4 Structural parts of ASSEMBLIES .. 18
 3.5 Conditions of installation of ASSEMBLIES ... 20
 3.6 Insulation characteristics ... 20
 3.7 Protection against electric shock .. 23
 3.8 Characteristics .. 25
 3.9 Verification ... 27
 3.10 Manufacturer/user .. 28
4 Symbols and abbreviations .. 28
5 Interface characteristics ... 29
 5.1 General .. 29
 5.2 Voltage ratings ... 29
 5.2.1 Rated voltage (U_r) (of the ASSEMBLY) ... 29
 5.2.2 Rated operational voltage (U_{op}) (of a circuit of an ASSEMBLY) 29
 5.2.3 Rated insulation voltage (U_i) (of a circuit of an ASSEMBLY) 29
 5.2.4 Rated impulse withstand voltage (U_{imp}) (of the ASSEMBLY) 29
 5.3 Current ratings .. 30
 5.3.1 Rated current of the ASSEMBLY (I_{nA}) ... 30
 5.3.2 Rated current of a circuit (I_{nc}) ... 30
 5.3.3 Rated peak withstand current (I_{pk}) .. 30
 5.3.4 Rated short-time withstand current (I_{cw}) (of a circuit of an ASSEMBLY) 30
 5.3.5 Rated conditional short-circuit current of an ASSEMBLY (I_{cc}) 30
 5.4 Rated diversity factor (RDF) .. 31
 5.5 Rated frequency (f_n) .. 31
 5.6 Other characteristics .. 31
6 Information .. 32
 6.1 ASSEMBLY designation marking .. 32
 6.2 Documentation ... 32
 6.2.1 Information relating to the ASSEMBLY ... 32
 6.2.2 Instructions for handling, installation, operation and maintenance 32
 6.3 Device and/or component identification .. 33
7 Service conditions .. 33
 7.1 Normal service conditions .. 33
 7.1.1 Ambient air temperature ... 33
 7.1.2 Humidity conditions ... 33
 7.1.3 Pollution degree ... 33
 7.1.4 Altitude .. 34
 7.2 Special service conditions ... 34
 7.3 Conditions during transport, storage and installation ... 35
8 Constructional requirements
 8.1 Strength of materials and parts
 8.1.1 General
 8.1.2 Protection against corrosion
 8.1.3 Properties of insulating materials
 8.1.4 Resistance to ultra-violet radiation
 8.1.5 Mechanical strength
 8.1.6 Lifting provision
 8.2 Degree of protection provided by an ASSEMBLY enclosure
 8.2.1 Protection against mechanical impact
 8.2.2 Protection against contact with live parts, ingress of solid foreign bodies and water
 8.2.3 ASSEMBLY with removable parts
 8.3 Clearances and creepage distances
 8.3.1 General
 8.3.2 Clearances
 8.3.3 Creepage distances
 8.4 Protection against electric shock
 8.4.1 General
 8.4.2 Basic protection
 8.4.3 Fault protection
 8.4.4 Protection by total insulation
 8.4.5 Limitation of steady-state touch current and charge
 8.4.6 Operating and servicing conditions
 8.5 Incorporation of switching devices and components
 8.5.1 Fixed parts
 8.5.2 Removable parts
 8.5.3 Selection of switching devices and components
 8.5.4 Installation of switching devices and components
 8.5.5 Accessibility
 8.5.6 Barriers
 8.5.7 Direction of operation and indication of switching positions
 8.5.8 Indicator lights and push-buttons
 8.6 Internal electrical circuits and connections
 8.6.1 Main circuits
 8.6.2 Auxiliary circuits
 8.6.3 Bare and insulated conductors
 8.6.4 Selection and installation of non-protected live conductors to reduce the possibility of short-circuits
 8.6.5 Identification of the conductors of main and auxiliary circuits
 8.6.6 Identification of the protective conductor (PE, PEN) and of the neutral conductor (N) of the main circuits
 8.7 Cooling
 8.8 Terminals for external conductors
 9 Performance requirements
 9.1 Dielectric properties
 9.1.1 General
 9.1.2 Power-frequency withstand voltage
 9.1.3 Impulse withstand voltage
9.1.4 Protection of surge protective devices ... 51
9.2 Temperature rise limits .. 52
9.3 Short-circuit protection and short-circuit withstand strength 52
 9.3.1 General .. 52
 9.3.2 Information concerning short-circuit withstand strength 52
 9.3.3 Relationship between peak current and short-time current 53
 9.3.4 Co-ordination of protective devices ... 53
9.4 Electromagnetic compatibility (EMC) ... 53
10 Design verification ... 54
 10.1 General .. 54
 10.2 Strength of materials and parts ... 55
 10.2.1 General .. 55
 10.2.2 Resistance to corrosion ... 55
 10.2.3 Properties of insulating materials .. 56
 10.2.4 Resistance to ultra-violet (UV) radiation .. 58
 10.2.5 Lifting .. 58
 10.2.6 Mechanical impact .. 59
 10.2.7 Marking .. 59
 10.3 Degree of protection of ASSEMBLIES ... 59
 10.4 Clearances and creepage distances ... 59
 10.5 Protection against electric shock and integrity of protective circuits 60
 10.5.1 Effectiveness of the protective circuit ... 60
 10.5.2 Effective earth continuity between the exposed conductive parts of the ASSEMBLY and the protective circuit ... 60
 10.5.3 Short-circuit withstand strength of the protective circuit 60
 10.6 Incorporation of switching devices and components 61
 10.6.1 General .. 61
 10.6.2 Electromagnetic compatibility ... 61
 10.7 Internal electrical circuits and connections ... 61
 10.8 Terminals for external conductors .. 61
 10.9 Dielectric properties .. 61
 10.9.1 General .. 61
 10.9.2 Power-frequency withstand voltage ... 61
 10.9.3 Impulse withstand voltage .. 62
 10.9.4 Testing of enclosures made of insulating material 64
 10.9.5 External operating handles of insulating material 64
 10.10 Verification of temperature rise ... 64
 10.10.1 General .. 64
 10.10.2 Verification by testing .. 64
 10.10.3 Derivation of ratings for similar variants .. 70
 10.10.4 Verification assessment .. 71
 10.11 Short-circuit withstand strength ... 74
 10.11.1 General .. 74
 10.11.2 Circuits of ASSEMBLIES which are exempted from the verification of the short-circuit withstand strength .. 74
 10.11.3 Verification by comparison with a reference design – Utilising a check list .. 75
 10.11.4 Verification by comparison with a reference design – Utilising calculation .. 75
 10.11.5 Verification by test .. 75
10.12 Electromagnetic compatibility (EMC) ... 80
10.13 Mechanical operation .. 80

11 Routine verification ... 80

11.1 General .. 80
11.2 Degree of protection of enclosures .. 81
11.3 Clearances and creepage distances .. 81
11.4 Protection against electric shock and integrity of protective circuits 81
11.5 Incorporation of built-in components ... 81
11.6 Internal electrical circuits and connections .. 81
11.7 Terminals for external conductors .. 81
11.8 Mechanical operation .. 82
11.9 Dielectric properties .. 82
11.10 Wiring, operational performance and function .. 82

Annex A (normative) Minimum and maximum cross-section of copper conductors suitable for connection to terminals for external conductors (see 8.8) ... 90
Annex B (normative) Method of calculating the cross-sectional area of protective conductors with regard to thermal stresses due to currents of short duration .. 91
Annex C (informative) User information template .. 92
Annex D (informative) Design verification ... 96
Annex E (informative) Rated diversity factor ... 97
Annex F (normative) Measurement of clearances and creepage distances 106
Annex G (normative) Correlation between the nominal voltage of the supply system and the rated impulse withstand voltage of the equipment ... 111
Annex H (informative) Operating current and power loss of copper conductors 113
Annex I (Void) ... 115
Annex J (normative) Electromagnetic compatibility (EMC) 116
Annex K (normative) Protection by electrical separation ... 123
Annex L (informative) Clearances and creepage distances for North American region 126
Annex M (informative) North American temperature rise limits 127
Annex N (normative) Operating current and power loss of bare copper bars 128
Annex O (informative) Guidance on temperature rise verification 130
Annex P (normative) Verification of the short-circuit withstand strength of busbar structures by comparison with a tested reference design by calculation 135
Bibliography ... 139

Figure E.1 – Typical ASSEMBLY ... 98
Figure E.2 – Example 1: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0.8 ... 100
Figure E.3 – Example 2: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0.8 ... 101
Figure E.4 – Example 3: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0.8 ... 102
Figure E.5 – Example 4: Table E.1 – Functional unit loading for an ASSEMBLY with a rated diversity factor of 0.8 ... 103
Figure E.6 – Example of average heating effect calculation 104
Figure E.7 – Example graph for the relation between the equivalent RDF and the parameters at intermittent duty at $t_1 = 0.5$ s, $I_1 = 7*I_2$ at different cycle times 105
Figure E.8 – Example graph for the relation between the equivalent RDF and the parameters at intermittent duty at $I_1 = I_2$ (no starting overcurrent) ... 105
Figure F.1 – Measurement of ribs ... 110
Figure J.1 – Examples of ports ... 116
Figure O.1 – Temperature rise verification methods .. 134
Figure P.1 – Tested busbar structure (TS) .. 135
Figure P.2 – Non tested busbar structure (NTS) ... 136
Figure P.3 – Angular busbar configuration with supports at the corners 138

Table 1 – Minimum clearances in air a (8.3.2) ... 82
Table 2 – Minimum creepage distances (8.3.3) ... 83
Table 3 – Cross-sectional area of a copper protective conductor (8.4.3.2.2) 83
Table 4 – Conductor selection and installation requirements (8.6.4) 84
Table 5 – Minimum terminal capacity for copper protective conductors (PE, PEN) (8.8) 84
Table 6 – Temperature-rise limits (9.2) .. 85
Table 7 – Values for the factor n a (9.3.3) .. 86
Table 8 – Power-frequency withstand voltage for main circuits (10.9.2) 86
Table 9 – Power-frequency withstand voltage for auxiliary and control circuits (10.9.2) 86
Table 10 – Impulse withstand test voltages (10.9.3) .. 87
Table 11 – Copper test conductors for rated currents up to 400 A inclusive (10.10.2.3.2) 87
Table 12 – Copper test conductors for rated currents from 400 A to 4 000 A (10.10.2.3.2) 88
Table 13 – Short-circuit verification by comparison with a reference design: check list (10.5.3.3, 10.11.3 and 10.11.4) ... 88
Table 14 – Relationship between prospective fault current and diameter of copper wire 89
Table A.1 – Cross-section of copper conductors suitable for connection to terminals for external conductors ... 90
Table B.1 – Values of k for insulated protective conductors not incorporated in cables, or bare protective conductors in contact with cable covering ... 91
Table C.1 – Template ... 92
Table D.1 – List of design verifications to be performed .. 96
Table E.1 – Examples of loading for an ASSEMBLY with a rated diversity factor of 0,8 99
Table E.2 – Example of loading of a group of circuits (Section B – Figure E.1) with a rated diversity factor of 0,9 ... 104
Table E.3 – Example of loading of a group of circuits (Sub-distribution board – Figure E.1) with a rated diversity factor of 0,9 ... 104
Table F.1 – Minimum width of grooves .. 106
Table G.1 – Correspondence between the nominal voltage of the supply system and the equipment rated impulse withstand voltage ... 112
Table H.1 – Operating current and power loss of single-core copper cables with a permissible conductor temperature of 70 °C (ambient temperature inside the ASSEMBLY: 55 °C) ... 113
Table H.2 – Reduction factor k_1 for cables with a permissible conductor temperature of 70 °C (extract from IEC 60364-5-52:2009, Table B.52.14) ... 114
Table J.1 – Tests for EMC immunity for environment A (see J.10.12.1) 120
Table J.2 – Tests for EMC immunity for environment B (see J.10.12.1) 121
Table J.3 – Acceptance criteria when electromagnetic disturbances are present..............122
Table K.1 – Maximum disconnecting times for TN systems ..125
Table L.1 – Minimum clearances in air ...126
Table L.2 – Minimum creepage distances ...126
Table M.1 – North American temperature rise limits ..127
Table N.1 – Operating current and power loss of bare copper bars with rectangular cross-section, run horizontally and arranged with their largest face vertical, frequency 50 Hz to 60 Hz (ambient temperature inside the ASSEMBLY: 55 °C, temperature of the conductor 70 °C) ...128
Table N.2 – Factor k_A for different temperatures of the air inside the ASSEMBLY and/or for the conductors ...129
INTRODUCTION

The purpose of this standard is to harmonize as far as practicable all rules and requirements of a general nature applicable to low-voltage switchgear and controlgear assemblies (ASSEMBLIES) in order to obtain uniformity of requirements and verification for ASSEMBLIES and to avoid the need for verification to other standards. All those requirements for the various ASSEMBLIES standards which can be considered as general have therefore been gathered in this basic standard together with specific subjects of wide interest and application, e.g. temperature rise, dielectric properties, etc.

For each type of low-voltage switchgear and controlgear assembly only two main standards are necessary to determine all requirements and the corresponding methods of verification:

- this basic standard referred to as “Part 1” in the specific standards covering the various types of low-voltage switchgear and controlgear assemblies;
- the specific ASSEMBLY standard hereinafter also referred to as the relevant ASSEMBLY standard.

For a general rule to apply to a specific ASSEMBLY standard, it should be explicitly referred to by quoting the relevant clause or sub-clause number of this standard followed by “Part 1” e.g. “9.1.3 of Part 1”.

A specific ASSEMBLY standard may not require and hence need not call up a general rule where it is not applicable, or it may add requirements if the general rule is deemed inadequate in the particular case but it may not deviate from it unless there is substantial technical justification detailed in the specific ASSEMBLY standard.

Where in this standard a cross-reference is made to another clause, the reference is to be taken to apply to that clause as amended by the specific ASSEMBLY standard, where applicable.

Requirements in this standard that are subject to agreement between the ASSEMBLY manufacturer and the user are summarised in Annex C (informative). This schedule also facilitates the supply of information on basic conditions and additional user specifications to enable proper design, application and utilization of the ASSEMBLY.

For the new re-structured IEC 61439 series, the following parts are envisaged:

a) IEC 61439-1: General rules
b) IEC 61439-2: Power switchgear and controlgear ASSEMBLIES (PSC-ASSEMBLIES)
c) IEC 61439-3: Distribution boards (to supersede IEC 60439-3)
d) IEC 61439-4: ASSEMBLIES for construction sites (to supersede IEC 60439-4)
e) IEC 61439-5: ASSEMBLIES for power distribution (to supersede IEC 60439-5)
f) IEC 61439-6: Busbar trunking systems (to supersede IEC 60439-2)
g) IEC/TR 61439-0: Guidance to specifying ASSEMBLIES.

This list is not exhaustive; additional Parts may be developed as the need arises.