We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
  • ASTM D 8340 : 2020 : REV A

    Superseded A superseded Standard is one, which is fully replaced by another Standard, which is a new edition of the same Standard.
    Add to Watchlist
    This Standard has been added successfully to your Watchlist.
    Please visit My Watchlist to see all standards that you are watching.
    Please log in or to add this standard to your Watchlist.
    We could not add this standard to your Watchlist.
    Please retry or contact support for assistance.
    You need to be logged in to add this standard to your Watchlist.
    Please log in now or create an account to add.
    You already added this Product in the Watchlist.

    Standard Practice for Performance-Based Qualification of Spectroscopic Analyzer Systems

    Available format(s):  Hardcopy, PDF

    Superseded date:  05-01-2022

    Language(s):  English

    Published date:  04-12-2020

    Publisher:  American Society for Testing and Materials

    Add to Watchlist

    Add To Cart

    Scope - (Show below) - (Hide below)

    1.1This practice covers requirements for establishing performance-based qualification of vibrational spectroscopic analyzer systems intended to be used to predict the test result of a material that would be produced by a Primary Test Method (PTM) if the same material is tested by the PTM.

    1.1.1This practice provides methodology to establish the lower/upper prediction limits associated with the Predicted Primary Test Method Result (PPTMR) in 1.1 with a specified degree of confidence that would contain the PTM result (if tested by the PTM).

    1.1.2The prediction limits in 1.1.1 can be used to estimate the confidence that product released using the analyzer system based on a PPTMR that meets PTM-based specification limits will meet PTM-based specification limits when tested by a PTM.

    1.2The practice covers the qualification of on-line, at-line, or laboratory infrared or Raman analyzers used to predict physical, chemical, or performance properties of liquid petroleum products and fuels. Infrared analyzers can operate in the near-infrared (NIR) region, mid-infrared (MIR) region, or both.

    1.2.1This practice applies to all analyzer systems that can meet the performance requirements defined within.

    1.2.2 This practice is not limited to analyzers designed by any specific instrument manufacturer.

    1.2.3This practice allows for multiple calibration techniques to create a multivariate model which relates the spectra produced by the analyzer to the corresponding property determined by a PTM. Spectra can be used to predict multiple properties, but the analyzer system performance of each predicted property is qualified individually.

    1.3The practice describes procedures for establishing performance requirements for analyzer system applications. The user of this practice must establish written protocols to confirm the procedures are being followed.

    1.4This practice makes use of standard practices, guides, and methods already established in ASTM. Additional requirements are listed within this practice.

    1.5Any multivariate model that meets performance requirements and detects when the spectrum of a sample is an outlier (analysis that represents an extrapolation of the model) or a nearest neighbor distance inlier (a spectrum residing in a gap in the multivariate space) can be used.

    1.6This practice can be used with methods for determining properties of biofuel blends. Three alternative procedures can be used. In all three cases, the qualification of the predicted values for the blend are established and monitored as part of a continual program by application of Practice D6122 or by combined application of Practices D6122 and D3764 (see definition in section 3.2.3).

    1.6.1If the analyzer is used to directly predict a property of the biofuel blend, and both the Primary Test Method Result (PTMR) and Predicted Primary Test Method Result (PPTMR) are measured on the same material, then the analyzer is validated using Practice D6122.

    1.6.2If the analyzer is used to directly predict a property of a blend stock to which a fixed level of biofuel material is added prior to measurement by the PTM, and if the multivariate model correlates the spectrum of the blend stock to the PTMR for the fixed level blend, then the analyzer is validated using Practice D6122.

    1.6.3If the analyzer directly predicts a property of a blend stock to which some amount of biofuel material is later added, then Practice D6122 is used to validate the analyzer performance. If the PPTMR produced by the analyzer is input into a second model to predict the property value for the final blend, based on the PPTMR for the blend stock and the blend level for the biofuel material, then the performance of this second model is validated using Practice D3764.

    1.7Disclaimer of Liability as to Patented Inventions—Neither ASTM International nor an ASTM committee shall be responsible for identifying all patents under which a license is required in using this document. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

    1.8This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

    1.9This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    General Product Information - (Show below) - (Hide below)

    Committee D 02
    Document Type Standard Practice
    Publisher American Society for Testing and Materials
    Status Superseded
    Superseded By
    Supersedes

    Standards Referencing This Book - (Show below) - (Hide below)

    ASTM D 6792 : 2021 : REV A Standard Practice for Quality Management Systems in Petroleum Products, Liquid Fuels, and Lubricants Testing Laboratories
    ASTM D 6122 : 2021 Standard Practice for Validation of the Performance of Multivariate Online, At-Line, Field and Laboratory Infrared Spectrophotometer, and Raman Spectrometer Based Analyzer Systems
    ASTM D 6122 : 2020 : REV A Standard Practice for Validation of the Performance of Multivariate Online, At-Line, Field and Laboratory Infrared Spectrophotometer, and Raman Spectrometer Based Analyzer Systems
    ASTM D 6299 : 2021 Standard Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance
    ASTM D 8321 : 2021 Standard Practice for Development and Validation of Multivariate Analyses for Use in Predicting Properties of Petroleum Products, Liquid Fuels, and Lubricants based on Spectroscopic Measurements
    ASTM D 3764 : 1992 : R1998 Standard Practice for Validation of Process Stream Analyzer Systems
    ASTM D 6596 : 2000 : R2021 Standard Practice for Ampulization and Storage of Gasoline and Related Hydrocarbon Materials
    ASTM D 8321 : 2020 Standard Practice for Development and Validation of Multivariate Analyses for Use in Predicting Properties of Petroleum Products, Liquid Fuels, and Lubricants based on Spectroscopic Measurements
    ASTM D 7235 : 2016 Standard Guide for Establishing a Linear Correlation Relationship Between Analyzer and Primary Test Method Results Using Relevant ASTM Standard Practices
    ASTM D 6596 : 2000 : R2016 Standard Practice for Ampulization and Storage of Gasoline and Related Hydrocarbon Materials
    ASTM D 6792 : 2020 Standard Practice for Quality Management Systems in Petroleum Products, Liquid Fuels, and Lubricants Testing Laboratories
    ASTM D 6792 : 2021 Standard Practice for Quality Management Systems in Petroleum Products, Liquid Fuels, and Lubricants Testing Laboratories
    ASTM D 6708 : 2001 Standard Practice for Statistical Assessment and Improvement of the Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
    ASTM D 6708 : 2021 Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
    ASTM D 7235 : 2021 Standard Guide for Establishing a Linear Correlation Relationship Between Analyzer and Primary Test Method Results Using Relevant ASTM Standard Practices
    ASTM E 1866 : 1997 : R2021 Standard Guide for Establishing Spectrophotometer Performance Tests
    ASTM E 1866 : 1997 : R2013 Standard Guide for Establishing Spectrophotometer Performance Tests
    ASTM D 6299 : 2020 : REV A Standard Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance
    ASTM D 6708 : 2019 : REV A : EDT 1 Standard Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
    • Access your standards online with a subscription

      Features

      • Simple online access to standards, technical information and regulations
      • Critical updates of standards and customisable alerts and notifications
      • Multi - user online standards collection: secure, flexibile and cost effective