• There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM E 2933 : 2021

Current

Current

The latest, up-to-date edition.

Standard Specification for Stationary Point Chemical Vapor Detectors (SPCVD) for Homeland Security Applications

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

23-09-2021

1.1 General:

1.1.1 This specification presents baseline performance requirements and additional optional capabilities for stationary point chemical vapor detectors (SPCVD) designed for continuous, 24 h a day 7 days a week, monitoring of public, non-industrial facilities. This specification is one of several that describe chemical vapor detectors (for example, handheld and stationary) and chemical detection capabilities including: chemical vapor hazard detection, identification, classification, and quantification. An SPCVD is capable of detecting and alarming when exposed to chemical vapors that pose a risk as defined by the Acute Exposure Guideline Levels for Selected Airborne Chemicals (AEGL). For example, chemical vapors of interest for homeland security applications, see Appendix X1. The SPCVD should not alarm to background chemical vapors and should provide low false positive alarm rates and no false negatives. Procurement agents and end users must identify the specific chemicals of interest and environmental requirements for the given facility.

1.1.1.1 An SPCVD samples air from immediate surroundings and is comprised of one or more detectors using one or more chemical detection technologies. An SPCVD also includes air sampling system(s), power system(s), computer(s), data storage, data network communication interface(s), and an enclosure, see Fig. 1. An SPCVD may be combined with other SPCVDs, other chemical, biological, radiological, nuclear, and explosive (CBRNE) detectors, and other monitoring devices such as video. A remote command center may monitor and control these devices and communicate information to the responsible authorities and responders, as depicted in Fig. 2.

FIG. 1 An Example Schematic of a Stationary Point Chemical Vapor Detector (SPCVD)

An Example Schematic of a Stationary Point Chemical Vapor Detector (SPCVD)An Example Schematic of a Stationary Point Chemical Vapor Detector (SPCVD)

The SPCVD is a unit which samples air from immediate surroundings and is comprised of one or more detectors using one or more chemical detection technologies. An SPCVD also includes air sampling system(s), power system(s), computer(s), data storage, data network communication interface(s), and an enclosure.

FIG. 2 A Conceptual Representation of a Facility Security System with Stationary Point Chemical Vapor Detectors (SPCVDs) integrated with other Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) Detectors, and Other Monitoring Devices such as Video

A Conceptual Representation of a Facility Security System with Stationary Point Chemical Vapor Detectors (SPCVDs) integrated with other Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) Detectors, and Other Monitoring Devices such as VideoA Conceptual Representation of a Facility Security System with Stationary Point Chemical Vapor Detectors (SPCVDs) integrated with other Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) Detectors, and Other Monitoring Devices such as Video

1.1.2 This specification provides the SPCVD baseline requirements, including performance, system, environmental, and documentation requirements. This specification provides SPCVD designers, manufacturers, integrators, procurement personnel, end users/practitioners, and responsible authorities a common set of parameters to match capabilities and user needs.

1.1.3 This specification is not meant to provide for all uses. Manufacturers, purchasers, and end users will need to determine specific requirements based on the installation location and environment.

1.2 SPCVD Chemical Detection Capabilities—Manufacturers document and verify, through testing, the chemical detection capabilities of the SPCVD. Test methods for assessing chemical detection capabilities are available from the Department of Homeland Security and the Department of Defense and are listed in Appendix X2.

1.3 SPCVD System and Environmental Properties—Manufacturers document and verify, through testing, the system and environmental properties of the SPCVD. Example test methods for assessing the system and environmental properties are listed in Appendix X3.

1.4 Units—The values stated in SI units are to be regarded as standard. Vapor concentrations of the hazardous materials are presented in parts per million (ppm) as used in Acute Exposure Guideline Levels for Selected Airborne Chemicals, Vols 1-9 (see 2.2) and in mg/m3.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Committee
E 54
DocumentType
Standard
Pages
10
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

ASTM E 2771 : 2011 : R2019 Standard Terminology for Homeland Security Applications

ASTM E 2885 : 2021 Standard Specification for Handheld Point Chemical Vapor Detectors (HPCVD) for Homeland Security Applications

View more information
£53.79
Excluding VAT

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.