• There are no items in your cart
We noticed you’re not on the correct regional site. Switch to our AMERICAS site for the best experience.
Dismiss alert

ASTM F 3244 : 2021

Current

Current

The latest, up-to-date edition.

Standard Test Method for Navigation: Defined Area

Available format(s)

Hardcopy , PDF

Language(s)

English

Published date

13-08-2021

1.1Purpose:

1.1.1The purpose of this test method is to evaluate an automatic, automated, or autonomous-unmanned ground vehicle’s (A-UGV) capability of traversing through a defined space with limited A-UGV clearance. This test method is intended for use by A-UGV manufacturers, installers, and users. This test method defines a set of generic 2D area shapes representative of user applications and for different A-UGV types.

1.1.2A-UGVs shall possess a certain set of navigation capabilities appropriate to A-UGV operations. Two examples of such capabilities include A-UGV movement between structures that define the vehicle path or obstacle avoidance. A navigation system is the monitoring and controlling functions of the A-UGV, providing frequent A-UGV updates of vehicle movement from one place to another. A-UGV environments often include various constraints to A-UGV mobility, such as boundaries and obstacles. In this test method, apparatuses, impairments, procedures, tasks, and metrics are specified that apply constraints and thereby, standard test methods for determining an A-UGV’s navigation capabilities are defined.

1.1.3This test method is scalable to provide a range of dimensions to constrain the A-UGV mobility during task performance.

1.1.4A-UGVs shall be able to handle many types of open and defined area complexities with appropriate precision and accuracy to perform a particular task.

1.1.5The required mobility capabilities include either preprogrammed movement, autonomous movement, or a combination of both, from a start location to an end location. Further mobility requirements may include: sustained speeds, vehicle reconfiguration to pass through defined spaces, payload, A-UGV movement within constrained volumes, A-UGV avoidance of obstacles while navigating, or other vehicle capabilities, or combinations thereof. This test method is designed such that a candidate A-UGV can be evaluated as to whether it meets a set of user application requirements.

1.1.6This test method is used to evaluate the capabilities of a single A-UGV operating with commands and data provided to it by an operator (for example, locations of goal points, map of the environment), as well as those derived from its own sensors (for example, locations of obstacles in the environment), as opposed to information provided to it from another A-UGV or fleet controller. There may be future standards that address the capabilities of multiple A-UGVs – or fleets – that work together.

1.1.7This test method does not consider the act of acquiring or removing payloads, such as picking up/dropping off a pallet or connecting to/disconnecting from a trailer, during navigation. The A-UGV may have a payload as part of its configuration (see Practice F3327) that will be unchanged during the test. A future standard may address these types of capabilities during navigation.

1.1.8Performing Location—This test method shall be performed in a location where the apparatus and environmental test conditions can be fully implemented. Environmental conditions are specified and recorded (see Practice F3218).

1.1.9Additional test methods within Committee F45 are anticipated to be developed to address additional or advanced mobility capability requirements, such as a fleet of A-UGVs coordinating their movement through a facility.

1.2Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are not precise mathematical conversions to inch-pound units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses are provided for information only and are not considered standard.

1.3This standard does not purport to address all of the safety concerns, if any, associated with its use. Safety standards such as ANSI/ITSDF B56.5, ISO 3691-4:2020, or other safety standards should be followed. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Committee
F 45
DocumentType
Test Method
Pages
20
PublisherName
American Society for Testing and Materials
Status
Current
Supersedes

ASTM F 3499 : 2021 Standard Test Method for Confirming the Docking Performance of A-UGVs
ASTM F 3218 : 2019 Standard Practice for Documenting Environmental Conditions for Utilization with A-UGV Test Methods
ASTM F 3243 : 2021 Standard Practice for Implementing Communications Impairments on A-UGV Systems

ASTM F 3327 : 2018 Standard Practice for Recording the A-UGV Test Configuration
ASTM F 3200 : 2023 Standard Terminology for Robotics, Automation, and Autonomous Systems
ASTM F 3243 : 2021 Standard Practice for Implementing Communications Impairments on A-UGV Systems
ASTM F 3200 : 2022 Standard Terminology for Driverless Automatic Guided Industrial Vehicles
ASTM F 3200 : 2020 : REV A Standard Terminology for Driverless Automatic Guided Industrial Vehicles
ASTM F 3200 : 2022 : REV A Standard Terminology for Robotics, Automation, and Autonomous Systems
ASTM F 3327 : 2023 Standard Practice for Recording the A-UGV Test Configuration

View more information
£58.92
Excluding VAT

Access your standards online with a subscription

Features

  • Simple online access to standards, technical information and regulations.

  • Critical updates of standards and customisable alerts and notifications.

  • Multi-user online standards collection: secure, flexible and cost effective.